
FPL 2024

Fantastic arithmetic beasts
and where to find them

Florent de Dinechin Bogdan Pasca

Where to find them? In your application...

... but then you will need some help to bring them to light.

www.flopoco.org

A generator of application-specific hardware arithmetic operators

written in C++, outputting VHDL

open and extensible

A philosophy of computing just right

Interface: You ask for 17 bits, you get 17 correct bits.

Inside: (try to) never compute bits that are not useful to the final result

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 2

Where to find them? In your application...

... but then you will need some help to bring them to light.

www.flopoco.org

A generator of application-specific hardware arithmetic operators

written in C++, outputting VHDL

open and extensible

A philosophy of computing just right

Interface: You ask for 17 bits, you get 17 correct bits.

Inside: (try to) never compute bits that are not useful to the final result

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 2

Where to find them? In your application...

... but then you will need some help to bring them to light.

www.flopoco.org

A generator of application-specific hardware arithmetic operators

written in C++, outputting VHDL

open and extensible

A philosophy of computing just right

Interface: You ask for 17 bits, you get 17 correct bits.

Inside: (try to) never compute bits that are not useful to the final result

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 2

Where to find them? In your application...

... but then you will need some help to bring them to light.

www.flopoco.org

A generator of application-specific hardware arithmetic operators

written in C++, outputting VHDL

open and extensible

A philosophy of computing just right

Interface: You ask for 17 bits, you get 17 correct bits.

Inside: (try to) never compute bits that are not useful to the final result

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 2

From the boring domestic animals ...

FloPoCoFunctional specification

Performance specification

FPGA frequency ...

operation name

input/output formats

... .vhdl

Everybody likes a single precision floating-point adder (here combinatorial)
./flopoco IEEEFPAdd wE=8 wF=23

... but it has many interesting little brothers...
./flopoco FPAdd wE=6 wF=31

frequency=300 dualpath=true

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 3

From the boring domestic animals ...

FloPoCoFunctional specification

Performance specification

FPGA frequency ...

operation name

input/output formats

... .vhdl

Everybody likes a single precision floating-point adder (here combinatorial)
./flopoco IEEEFPAdd wE=8 wF=23

... but it has many interesting little brothers...
./flopoco FPAdd wE=6 wF=31

frequency=300 dualpath=true

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 3

From the boring domestic animals ...

FloPoCoFunctional specification

Performance specification

FPGA frequency ...

operation name

input/output formats

... .vhdl

Everybody likes a single precision floating-point adder (here combinatorial)
./flopoco IEEEFPAdd wE=8 wF=23

... but it has many interesting little brothers...
./flopoco FPAdd wE=6 wF=31 frequency=300 dualpath=true

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 3

... to fantastic arithmetic beasts

Suppose you need to evaluate some function,
say e(x

2) on [0, 1)...

... with inputs and outputs on 24 bits.
There are several ways of doing this in FloPoCo.
Here is one of them.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

0 0.2 0.4 0.6 0.8 1

ex
2X Y

24 24

./flopoco FixFunctionByPiecewisePoly f="exp(x*x)" lsbIn=-24 lsbOut=-24 d=3

× + × + × +
σ2 σ1

C0C1C2C3

Polynomial Coefficient Table

X

A

address

α

w

Z

w − α
Z̃3 Z̃2

Z̃1 = Z

p̃(x)

fi
n
a
l
ro
u
n
d

Y

1 It works on the set of functions on which it works (TM)

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 4

... to fantastic arithmetic beasts

Suppose you need to evaluate some function,
say e(x

2) on [0, 1)...
... with inputs and outputs on 24 bits.

There are several ways of doing this in FloPoCo.
Here is one of them.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

0 0.2 0.4 0.6 0.8 1

ex
2X Y

24 24

./flopoco FixFunctionByPiecewisePoly f="exp(x*x)" lsbIn=-24 lsbOut=-24 d=3

× + × + × +
σ2 σ1

C0C1C2C3

Polynomial Coefficient Table

X

A

address

α

w

Z

w − α
Z̃3 Z̃2

Z̃1 = Z

p̃(x)

fi
n
a
l
ro
u
n
d

Y

1 It works on the set of functions on which it works (TM)

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 4

... to fantastic arithmetic beasts

Suppose you need to evaluate some function1,
say e(x

2) on [0, 1)...
... with inputs and outputs on 24 bits.
There are several ways of doing this in FloPoCo.
Here is one of them.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

0 0.2 0.4 0.6 0.8 1

ex
2X Y

24 24

./flopoco FixFunctionByPiecewisePoly f="exp(x*x)" lsbIn=-24 lsbOut=-24 d=3

× + × + × +
σ2 σ1

C0C1C2C3

Polynomial Coefficient Table

X

A

address

α

w

Z

w − α
Z̃3 Z̃2

Z̃1 = Z

p̃(x)

fi
n
a
l
ro
u
n
d

Y

1 It works on the set of functions on which it works (TM)
F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 4

Another one from one of yesterday’s talk

Computing Xmod 3329 for X a 24-bit integer:
./flopoco IntConstDiv wIn=24 d=3329 computeQuotient=false

computeRemainder=true arch=3

(Not as good as yesterday’s paper, though.)

Danila Gorodecky and Leonel Sousa
Scalable architecture of constant division on FPGA.
ARITH, 2023.

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 5

Florent is busy until retirement

We’ll see more fantastic beast in this talk.
Not all: there is already an infinite number of them in FloPoCo...

and a larger infinity still to be discovered.

Scope of FloPoCo

Hardware finite-precision implementations
of any computing kernel with a clear mathematical definition.

We have only scratched the surface of function
approximation

We’ll see many variants of classical operations

Coarser kernels such as Fast Fourier Transforms

From a frequency response to an IIR

...

/3

x3

FFT8

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 6

Agenda

Careless PhD students and their pets gone wrong

Fantastic but not evil: circuits computing just right

Fantastic arithmetic beasts escaped to vendor tools

Bit heaps: the mutant biology of arithmetic beasts

Why fantastic arithmetic beasts didn’t take over the world (and how to address it)

Backup slides

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 7

Careless PhD students
and their pets gone wrong

Careless PhD students and their pets gone wrong

Fantastic but not evil: circuits computing just right

Fantastic arithmetic beasts escaped to vendor tools

Bit heaps: the mutant biology of arithmetic beasts

Why fantastic arithmetic beasts didn’t take over the world (and how to address it)

Backup slides

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 8

All my life, I have been afflicted with very good students

Very good students tend to write kilolines of code...

Jérémie Detrey’s PhD, 2004-2007

FPLibrary: open-source VHDL for floating-point +, −, ×, /,
√

then parametric floating-point sin, cos, exp, log, ...

using two novel generic techniques for hardware function approximation

multipartite tables
HOTBM (higher-order table method)

then LNS (Logarithm Number System) operators for good measure

16 papers, thanks to a solid and well-tested agile development methodology

one paper, one random heap of quick-and-dirty code

All sorts of bits of Java/Python/C++ to generate some of the VHDL

Design-space exploration scripts, test-benches, etc

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 9

All my life, I have been afflicted with very good students

Very good students tend to write kilolines of code...

Jérémie Detrey’s PhD, 2004-2007

FPLibrary: open-source VHDL for floating-point +, −, ×, /,
√

then parametric floating-point sin, cos, exp, log, ...

using two novel generic techniques for hardware function approximation

multipartite tables
HOTBM (higher-order table method)

then LNS (Logarithm Number System) operators for good measure

16 papers, thanks to a solid and well-tested agile development methodology

one paper, one random heap of quick-and-dirty code

All sorts of bits of Java/Python/C++ to generate some of the VHDL

Design-space exploration scripts, test-benches, etc

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 9

All my life, I have been afflicted with very good students

Very good students tend to write kilolines of code...

Jérémie Detrey’s PhD, 2004-2007

FPLibrary: open-source VHDL for floating-point +, −, ×, /,
√

then parametric floating-point sin, cos, exp, log, ...

using two novel generic techniques for hardware function approximation

multipartite tables
HOTBM (higher-order table method)

then LNS (Logarithm Number System) operators for good measure

16 papers, thanks to a solid and well-tested agile development methodology

one paper, one random heap of quick-and-dirty code

All sorts of bits of Java/Python/C++ to generate some of the VHDL

Design-space exploration scripts, test-benches, etc

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 9

All my life, I have been afflicted with very good students

Very good students tend to write kilolines of code...

Jérémie Detrey’s PhD, 2004-2007

FPLibrary: open-source VHDL for floating-point +, −, ×, /,
√

then parametric floating-point sin, cos, exp, log, ...

using two novel generic techniques for hardware function approximation

multipartite tables
HOTBM (higher-order table method)

then LNS (Logarithm Number System) operators for good measure

16 papers, thanks to a solid and well-tested agile development methodology

one paper, one random heap of quick-and-dirty code

All sorts of bits of Java/Python/C++ to generate some of the VHDL

Design-space exploration scripts, test-benches, etc

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 9

All my life, I have been afflicted with very good students

Very good students tend to write kilolines of code...

Jérémie Detrey’s PhD, 2004-2007

FPLibrary: open-source VHDL for floating-point +, −, ×, /,
√

then parametric floating-point sin, cos, exp, log, ...

using two novel generic techniques for hardware function approximation

multipartite tables
HOTBM (higher-order table method)

then LNS (Logarithm Number System) operators for good measure

16 papers, thanks to a solid and well-tested agile development methodology

one paper, one random heap of quick-and-dirty code

All sorts of bits of Java/Python/C++ to generate some of the VHDL

Design-space exploration scripts, test-benches, etc

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 9

All my life, I have been afflicted with very good students

Very good students tend to write kilolines of code...

Jérémie Detrey’s PhD, 2004-2007

FPLibrary: open-source VHDL for floating-point +, −, ×, /,
√

then parametric floating-point sin, cos, exp, log, ...

using two novel generic techniques for hardware function approximation

multipartite tables
HOTBM (higher-order table method)

then LNS (Logarithm Number System) operators for good measure

16 papers, thanks to a solid and well-tested agile development methodology

one paper, one random heap of quick-and-dirty code

All sorts of bits of Java/Python/C++ to generate some of the VHDL

Design-space exploration scripts, test-benches, etc

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 9

All my life, I have been afflicted with very good students

Very good students tend to write kilolines of code...

Jérémie Detrey’s PhD, 2004-2007

FPLibrary: open-source VHDL for floating-point +, −, ×, /,
√

then parametric floating-point sin, cos, exp, log, ...

using two novel generic techniques for hardware function approximation

multipartite tables
HOTBM (higher-order table method)

then LNS (Logarithm Number System) operators for good measure

16 papers, thanks to a solid and well-tested agile development methodology

one paper, one random heap of quick-and-dirty code

All sorts of bits of Java/Python/C++ to generate some of the VHDL

Design-space exploration scripts, test-benches, etc

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 9

All my life, I have been afflicted with very good students

Very good students tend to write kilolines of code...

Jérémie Detrey’s PhD, 2004-2007

FPLibrary: open-source VHDL for floating-point +, −, ×, /,
√

then parametric floating-point sin, cos, exp, log, ...

using two novel generic techniques for hardware function approximation

multipartite tables
HOTBM (higher-order table method)

then LNS (Logarithm Number System) operators for good measure

16 papers, thanks to a solid and well-tested agile development methodology

one paper, one random heap of quick-and-dirty code

All sorts of bits of Java/Python/C++ to generate some of the VHDL

Design-space exploration scripts, test-benches, etc

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 9

Our scientific artifacts after Jérémie’s PhD

FPLibrary (VHDL available online)

stuff described in Jérémie’s PhD

(in French)

in other words:
work doomed to oblivion when the student leaves
(after his PhD, Jérémie defected to finite-field arithmetic)

drawing from https://xkcd.com/2347/

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 10

Our scientific artifacts after Jérémie’s PhD

FPLibrary (VHDL available online)

stuff described in Jérémie’s PhD
(in French)

in other words:
work doomed to oblivion when the student leaves
(after his PhD, Jérémie defected to finite-field arithmetic)

drawing from https://xkcd.com/2347/

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 10

Our scientific artifacts after Jérémie’s PhD

FPLibrary (VHDL available online)

stuff described in Jérémie’s PhD
(in French)

in other words:
work doomed to oblivion when the student leaves
(after his PhD, Jérémie defected to finite-field arithmetic)

drawing from https://xkcd.com/2347/

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 10

Hence an Engineering Grand Plan

VHDL is generated,
no need to distribute it

Rewrite this from scratch,
and distribute it

and it shall be called FloPoCo:
Floating-Point Cores (but not only)

OK, it doesn’t really look like a winning move...
but wait a bit.
(and I need to hire a Really Good PhD student)

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 11

Hence an Engineering Grand Plan

VHDL is generated,
no need to distribute it

Rewrite this from scratch,
and distribute it

and it shall be called FloPoCo:
Floating-Point Cores (but not only)

OK, it doesn’t really look like a winning move...
but wait a bit.
(and I need to hire a Really Good PhD student)

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 11

Hence an Engineering Grand Plan

VHDL is generated,
no need to distribute it

Rewrite this from scratch,
and distribute it

and it shall be called FloPoCo:
Floating-Point Cores (but not only)

OK, it doesn’t really look like a winning move...
but wait a bit.
(and I need to hire a Really Good PhD student)

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 11

Hence an Engineering Grand Plan

VHDL is generated,
no need to distribute it

Rewrite this from scratch,
and distribute it

and it shall be called FloPoCo:
Floating-Point Cores (but not only)

OK, it doesn’t really look like a winning move...
but wait a bit.
(and I need to hire a Really Good PhD student)

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 11

Historical excuses for all the bad technical choices

It had to be C++ because Jérémie had written HOTBM in C++
(and the thing is, at the time, I didn’t understand half of it)

Generating VHDL because FPLibrary was written in VHDL
(and to be frank, quite a lot of it was magical to me)

First version of FloPoCo was a superset of FPLibrary... by printing out FPLibrary code

A ����XXXXstupid �����XXXXXprimitive modest approach to hardware generation, but immediate benefits

better scaling, easier debugging than parametric VHDL
when you have many parameters

instead of a VHDL generate if, a C++ if =⇒ only the true branch in the VHDL
same for generate for loops
(compared to Jérémie’s parametric recursive VHDL for tree-like structures)

and very soon: automatic pipelining – because each submitted paper stated:
“the design will be pipelined in the final version”

and this is a perfect waste of good student’s time

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 12

Historical excuses for all the bad technical choices

It had to be C++ because Jérémie had written HOTBM in C++
(and the thing is, at the time, I didn’t understand half of it)

Generating VHDL because FPLibrary was written in VHDL
(and to be frank, quite a lot of it was magical to me)

First version of FloPoCo was a superset of FPLibrary... by printing out FPLibrary code

A ����XXXXstupid �����XXXXXprimitive modest approach to hardware generation, but immediate benefits

better scaling, easier debugging than parametric VHDL
when you have many parameters

instead of a VHDL generate if, a C++ if =⇒ only the true branch in the VHDL
same for generate for loops
(compared to Jérémie’s parametric recursive VHDL for tree-like structures)

and very soon: automatic pipelining – because each submitted paper stated:
“the design will be pipelined in the final version”

and this is a perfect waste of good student’s time

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 12

Historical excuses for all the bad technical choices

It had to be C++ because Jérémie had written HOTBM in C++
(and the thing is, at the time, I didn’t understand half of it)

Generating VHDL because FPLibrary was written in VHDL
(and to be frank, quite a lot of it was magical to me)

First version of FloPoCo was a superset of FPLibrary... by printing out FPLibrary code

A ����XXXXstupid �����XXXXXprimitive modest approach to hardware generation, but immediate benefits

better scaling, easier debugging than parametric VHDL
when you have many parameters

instead of a VHDL generate if, a C++ if =⇒ only the true branch in the VHDL
same for generate for loops
(compared to Jérémie’s parametric recursive VHDL for tree-like structures)

and very soon: automatic pipelining – because each submitted paper stated:
“the design will be pipelined in the final version”

and this is a perfect waste of good student’s time

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 12

Historical excuses for all the bad technical choices

It had to be C++ because Jérémie had written HOTBM in C++
(and the thing is, at the time, I didn’t understand half of it)

Generating VHDL because FPLibrary was written in VHDL
(and to be frank, quite a lot of it was magical to me)

First version of FloPoCo was a superset of FPLibrary... by printing out FPLibrary code

A ����XXXXstupid �����XXXXXprimitive modest approach to hardware generation, but immediate benefits

better scaling, easier debugging than parametric VHDL
when you have many parameters

instead of a VHDL generate if, a C++ if =⇒ only the true branch in the VHDL
same for generate for loops
(compared to Jérémie’s parametric recursive VHDL for tree-like structures)

and very soon: automatic pipelining – because each submitted paper stated:
“the design will be pipelined in the final version”

and this is a perfect waste of good student’s time

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 12

The engineering foundations to a Scientific Grand Plan

First written in this paper

When FPGAs are better at floating-point than microprocessors

When? As soon as the processor lacks hardware support:

SPICE Model-Evaluation,
cut from Kapre and DeHon (FPL 2009)

Dura Amdahl lex, sed lex.

but also fused operations such as
√
x2 + y2, and more...

In my humble opinion, this was a visionary paper: submitted to ISFPGA 2008

Tepid reviews (“prove it”, “lack of results”)...

=⇒ poster

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 13

The engineering foundations to a Scientific Grand Plan

First written in this paper

When FPGAs are better at floating-point than microprocessors

When? As soon as the processor lacks hardware support:

SPICE Model-Evaluation,
cut from Kapre and DeHon (FPL 2009)

Dura Amdahl lex, sed lex.

but also fused operations such as
√
x2 + y2, and more...

In my humble opinion, this was a visionary paper: submitted to ISFPGA 2008

Tepid reviews (“prove it”, “lack of results”)...

=⇒ poster

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 13

The engineering foundations to a Scientific Grand Plan

First written in this paper

When FPGAs are better at floating-point than microprocessors

When? As soon as the processor lacks hardware support:

SPICE Model-Evaluation,
cut from Kapre and DeHon (FPL 2009)

Dura Amdahl lex, sed lex.

but also fused operations such as
√
x2 + y2, and more...

In my humble opinion, this was a visionary paper: submitted to ISFPGA 2008

Tepid reviews (“prove it”, “lack of results”)...

=⇒ poster

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 13

Lack of results, prove it

As we all know, a reviewer is always right.
Therefore, we stubbornly wrote

An FPL 2009 paper:
Generating high-performance custom
floating-point pipelines.

Its journal version Designing custom arithmetic
data paths with FloPoCo.
IEEE Design & Test of Computers, 2011.

400+ GScholar citations,
TCFPGA Hall of Fame this year
How many people actually read it?
It is the “how to cite” paper for FloPoCo

And finally, an 800-page book:
Application-Specific Arithmetic. Springer, 2024.

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 14

Lack of results, prove it

As we all know, a reviewer is always right.
Therefore, we stubbornly wrote

An FPL 2009 paper:
Generating high-performance custom
floating-point pipelines.

Its journal version Designing custom arithmetic
data paths with FloPoCo.
IEEE Design & Test of Computers, 2011.

400+ GScholar citations,
TCFPGA Hall of Fame this year
How many people actually read it?
It is the “how to cite” paper for FloPoCo

And finally, an 800-page book:
Application-Specific Arithmetic. Springer, 2024.

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 14

Lack of results, prove it

As we all know, a reviewer is always right.
Therefore, we stubbornly wrote

An FPL 2009 paper:
Generating high-performance custom
floating-point pipelines.

Its journal version Designing custom arithmetic
data paths with FloPoCo.
IEEE Design & Test of Computers, 2011.

400+ GScholar citations,
TCFPGA Hall of Fame this year
How many people actually read it?
It is the “how to cite” paper for FloPoCo

And finally, an 800-page book:
Application-Specific Arithmetic. Springer, 2024.

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 14

Lack of results, prove it

As we all know, a reviewer is always right.
Therefore, we stubbornly wrote

An FPL 2009 paper:
Generating high-performance custom
floating-point pipelines.

Its journal version Designing custom arithmetic
data paths with FloPoCo.
IEEE Design & Test of Computers, 2011.

400+ GScholar citations,
TCFPGA Hall of Fame this year

How many people actually read it?
It is the “how to cite” paper for FloPoCo

And finally, an 800-page book:
Application-Specific Arithmetic. Springer, 2024.

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 14

Lack of results, prove it

As we all know, a reviewer is always right.
Therefore, we stubbornly wrote

An FPL 2009 paper:
Generating high-performance custom
floating-point pipelines.

Its journal version Designing custom arithmetic
data paths with FloPoCo.
IEEE Design & Test of Computers, 2011.

400+ GScholar citations,
TCFPGA Hall of Fame this year
How many people actually read it?
It is the “how to cite” paper for FloPoCo

And finally, an 800-page book:
Application-Specific Arithmetic. Springer, 2024.

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 14

Lack of results, prove it

As we all know, a reviewer is always right.
Therefore, we stubbornly wrote

An FPL 2009 paper:
Generating high-performance custom
floating-point pipelines.

Its journal version Designing custom arithmetic
data paths with FloPoCo.
IEEE Design & Test of Computers, 2011.

400+ GScholar citations,
TCFPGA Hall of Fame this year
How many people actually read it?
It is the “how to cite” paper for FloPoCo

And finally, an 800-page book:
Application-Specific Arithmetic. Springer, 2024.

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 14

Refinement of the Grand Plan

If the final title of your PhD is the same as it was when you started,
your research is probably boring.

When FPGAs are better at floating-point than microprocessors

Not your neighbour’s FPU

FPGA-specific arithmetic (floating-point, but not only)

All the operators you will never see in a processor (and how to build them)

Save routing! Save power! Don’t move around useless bits!

Application-specific arithmetic (FPGA, but not only)

Circuits computing just right

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 15

Refinement of the Grand Plan

If the final title of your PhD is the same as it was when you started,
your research is probably boring.

When FPGAs are better at floating-point than microprocessors

Not your neighbour’s FPU

FPGA-specific arithmetic (floating-point, but not only)

All the operators you will never see in a processor (and how to build them)

Save routing! Save power! Don’t move around useless bits!

Application-specific arithmetic (FPGA, but not only)

Circuits computing just right

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 15

Refinement of the Grand Plan

If the final title of your PhD is the same as it was when you started,
your research is probably boring.

When FPGAs are better at floating-point than microprocessors

Not your neighbour’s FPU

FPGA-specific arithmetic (floating-point, but not only)

All the operators you will never see in a processor (and how to build them)

Save routing! Save power! Don’t move around useless bits!

Application-specific arithmetic (FPGA, but not only)

Circuits computing just right

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 15

Refinement of the Grand Plan

If the final title of your PhD is the same as it was when you started,
your research is probably boring.

When FPGAs are better at floating-point than microprocessors

Not your neighbour’s FPU

FPGA-specific arithmetic (floating-point, but not only)

All the operators you will never see in a processor (and how to build them)

Save routing! Save power! Don’t move around useless bits!

Application-specific arithmetic (FPGA, but not only)

Circuits computing just right

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 15

Refinement of the Grand Plan

If the final title of your PhD is the same as it was when you started,
your research is probably boring.

When FPGAs are better at floating-point than microprocessors

Not your neighbour’s FPU

FPGA-specific arithmetic (floating-point, but not only)

All the operators you will never see in a processor (and how to build them)

Save routing! Save power! Don’t move around useless bits!

Application-specific arithmetic (FPGA, but not only)

Circuits computing just right

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 15

Refinement of the Grand Plan

If the final title of your PhD is the same as it was when you started,
your research is probably boring.

When FPGAs are better at floating-point than microprocessors

Not your neighbour’s FPU

FPGA-specific arithmetic (floating-point, but not only)

All the operators you will never see in a processor (and how to build them)

Save routing! Save power! Don’t move around useless bits!

Application-specific arithmetic (FPGA, but not only)

Circuits computing just right

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 15

Refinement of the Grand Plan

If the final title of your PhD is the same as it was when you started,
your research is probably boring.

When FPGAs are better at floating-point than microprocessors

Not your neighbour’s FPU

FPGA-specific arithmetic (floating-point, but not only)

All the operators you will never see in a processor (and how to build them)

Save routing! Save power! Don’t move around useless bits!

Application-specific arithmetic (FPGA, but not only)

Circuits computing just right

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 15

Message to my younger self

If you believe in an idea, stick to it, whatever the reviews say.

(bad reviews just mean your good idea was badly explained...)

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 16

Fantastic but not evil:
circuits computing just right

Careless PhD students and their pets gone wrong

Fantastic but not evil: circuits computing just right

Fantastic arithmetic beasts escaped to vendor tools

Bit heaps: the mutant biology of arithmetic beasts

Why fantastic arithmetic beasts didn’t take over the world (and how to address it)

Backup slides

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 17

Computing just right?

Bogdan said “great project, we need a logo”
and designed this:

It was initially OK, but... soon we were using
a delicate chisel more than a hammer.

This is the kind of thing FloPoCo does −→
It is a floating-point exponential operator
where each wire, each component is

tailored to its context with love and care.

(not a very good logo either)

unpack

X
flp(wE ,wF)

shift to fixed point

1.FX ufix(0,−wF)EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF)FloPoCo FPExp

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 18

Computing just right?

So as soon as Bogdan left I designed this:

(the proper term is probably allogory)

This is the kind of thing FloPoCo does −→
It is a floating-point exponential operator
where each wire, each component is

tailored to its context with love and care.

(not a very good logo either)

unpack

X
flp(wE ,wF)

shift to fixed point

1.FX ufix(0,−wF)EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF)FloPoCo FPExp

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 18

Computing just right?

So as soon as Bogdan left I designed this:

(the proper term is probably allogory)

This is the kind of thing FloPoCo does −→
It is a floating-point exponential operator
where each wire, each component is

tailored to its context with love and care.

(not a very good logo either)

unpack

X
flp(wE ,wF)

shift to fixed point

1.FX ufix(0,−wF)EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF)FloPoCo FPExp

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 18

Save resources! Save power! Don’t move useless bits around!

In software, as soon as your result is correct, it is probably wasteful

Gustafson: Does Angry birds really need single precision (8 decimal digits of accuracy)
considering that the trajectory was input using your fat fingers?

Plain common sense

If the lower bits carry useless noise, you don’t want to compute them...

... and you want even less to store them, transmit them, compute on them.

In FPGAs, we have this freedom.

With great freedom come great opportunities

In a circuit, we may choose, for each variable,
how many bits are computed/stored/transmitted! −→ the opportunities

Overwhelming freedom! Help! −→ the challenges

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 19

Save resources! Save power! Don’t move useless bits around!

In software, as soon as your result is correct, it is probably wasteful

Gustafson: Does Angry birds really need single precision (8 decimal digits of accuracy)
considering that the trajectory was input using your fat fingers?

Plain common sense

If the lower bits carry useless noise, you don’t want to compute them...

... and you want even less to store them, transmit them, compute on them.

In FPGAs, we have this freedom.

With great freedom come great opportunities

In a circuit, we may choose, for each variable,
how many bits are computed/stored/transmitted! −→ the opportunities

Overwhelming freedom! Help! −→ the challenges

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 19

Save resources! Save power! Don’t move useless bits around!

In software, as soon as your result is correct, it is probably wasteful

Gustafson: Does Angry birds really need single precision (8 decimal digits of accuracy)
considering that the trajectory was input using your fat fingers?

Plain common sense

If the lower bits carry useless noise, you don’t want to compute them...

... and you want even less to store them, transmit them, compute on them.

In FPGAs, we have this freedom.

With great freedom come great opportunities

In a circuit, we may choose, for each variable,
how many bits are computed/stored/transmitted! −→ the opportunities

Overwhelming freedom! Help! −→ the challenges

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 19

Opportunity #1: Computing Just Right makes interfaces simpler

Output format (number of output bits) specifies operator accuracy

The output format defines a quantum of precision (u or ulp for “unit in the last place”)

No need to compute more accurately than u: we couldn’t output it

No sense in computing less accurately than u: we don’t want to output garbage bits

R
u f (X)

YY

Inspired by IEEE-754

define quantization(x) for x ∈ R.
define operator(X) = quantization(operation(X))

Example: round to the nearest.

If you add one bit to the output, you divide u by 2, hence double the accuracy.

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 20

Opportunity #1: Computing Just Right makes interfaces simpler

Output format (number of output bits) specifies operator accuracy

The output format defines a quantum of precision (u or ulp for “unit in the last place”)

No need to compute more accurately than u: we couldn’t output it

No sense in computing less accurately than u: we don’t want to output garbage bits

R
u f (X)

YY

Inspired by IEEE-754

define quantization(x) for x ∈ R.
define operator(X) = quantization(operation(X))

Example: round to the nearest.

If you add one bit to the output, you divide u by 2, hence double the accuracy.

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 20

Opportunity #1: Computing Just Right makes interfaces simpler

Output format (number of output bits) specifies operator accuracy

The output format defines a quantum of precision (u or ulp for “unit in the last place”)

No need to compute more accurately than u: we couldn’t output it

No sense in computing less accurately than u: we don’t want to output garbage bits

R
u f (X)

Y

Y

Inspired by IEEE-754

define quantization(x) for x ∈ R.
define operator(X) = quantization(operation(X))

Example: round to the nearest.

If you add one bit to the output, you divide u by 2, hence double the accuracy.

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 20

Opportunity #1: Computing Just Right makes interfaces simpler

Output format (number of output bits) specifies operator accuracy

The output format defines a quantum of precision (u or ulp for “unit in the last place”)

No need to compute more accurately than u: we couldn’t output it

No sense in computing less accurately than u: we don’t want to output garbage bits

R
u f (X)

Y

Y

Inspired by IEEE-754

define quantization(x) for x ∈ R.
define operator(X) = quantization(operation(X))

Example: round to the nearest.

If you add one bit to the output, you divide u by 2, hence double the accuracy.
F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 20

Computing just right ⇐⇒ over-parameterization

unpack

X
flp(wE ,wF)

shift to fixed point

1.FX ufix(0,−wF)EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF)FloPoCo FPExp

unpack

X
flp(wE ,wF)

shift to fixed point

1.FX ufix(0,−wF)EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF)FloPoCo FPExp

ufix(wE − 2,−4)

ufix(wE , 0)

sfix(−1,−wF − g)

14

12

56

Example:

Multipliers of all shapes and sizes

In a double-precision exponential,

wE = 11, wF = 52,

first multiplier 14-bits in, 12 bits out

second multiplier 12-bits in, 56 bits out
... and truncated left and right

Not your neighbour’s multiplier.
Very strange arithmetic beasts.

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 21

Computing just right ⇐⇒ over-parameterization

unpack

X
flp(wE ,wF)

shift to fixed point

1.FX ufix(0,−wF)EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF)FloPoCo FPExp

unpack

X
flp(wE ,wF)

shift to fixed point

1.FX ufix(0,−wF)EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF)FloPoCo FPExp

ufix(wE − 2,−4)

ufix(wE , 0)

sfix(−1,−wF − g)

14

12

56

Example:

Multipliers of all shapes and sizes

In a double-precision exponential,

wE = 11, wF = 52,

first multiplier 14-bits in, 12 bits out

second multiplier 12-bits in, 56 bits out
... and truncated left and right

Not your neighbour’s multiplier.
Very strange arithmetic beasts.

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 21

Computing just right ⇐⇒ over-parameterization

unpack

X
flp(wE ,wF)

shift to fixed point

1.FX ufix(0,−wF)EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF)FloPoCo FPExp

unpack

X
flp(wE ,wF)

shift to fixed point

1.FX ufix(0,−wF)EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF)FloPoCo FPExp

ufix(wE − 2,−4)

ufix(wE , 0)

sfix(−1,−wF − g)

14

12

56

Example:

Multipliers of all shapes and sizes

In a double-precision exponential,

wE = 11, wF = 52,

first multiplier 14-bits in, 12 bits out

second multiplier 12-bits in, 56 bits out
... and truncated left and right

Not your neighbour’s multiplier.
Very strange arithmetic beasts.

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 21

Computing just right ⇐⇒ over-parameterization

unpack

X
flp(wE ,wF)

shift to fixed point

1.FX ufix(0,−wF)EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF)FloPoCo FPExp

unpack

X
flp(wE ,wF)

shift to fixed point

1.FX ufix(0,−wF)EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF)FloPoCo FPExp

ufix(wE − 2,−4)

ufix(wE , 0)

sfix(−1,−wF − g)

14

12

56

Example:

Multipliers of all shapes and sizes

In a double-precision exponential,

wE = 11, wF = 52,

first multiplier 14-bits in, 12 bits out

second multiplier 12-bits in, 56 bits out
... and truncated left and right

Not your neighbour’s multiplier.
Very strange arithmetic beasts.

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 21

Computing just right ⇐⇒ over-parameterization

unpack

X
flp(wE ,wF)

shift to fixed point

1.FX ufix(0,−wF)EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF)FloPoCo FPExp

unpack

X
flp(wE ,wF)

shift to fixed point

1.FX ufix(0,−wF)EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF)FloPoCo FPExp

ufix(wE − 2,−4)

ufix(wE , 0)

sfix(−1,−wF − g)

14

12

56

Example:

Multipliers of all shapes and sizes

In a double-precision exponential,

wE = 11, wF = 52,

first multiplier 14-bits in, 12 bits out

second multiplier 12-bits in, 56 bits out
... and truncated left and right

Not your neighbour’s multiplier.
Very strange arithmetic beasts.

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 21

Over-parameterization sounds a bit like over-engineering, doesn’t it?

⊖ OK, there is a bit more work involved in designing a parametric operator

To start with, it must be a hardware-generating program:
There is an infinite number of multipliers-by-a-constant.

You cannot chain them all in a library.

⊕ Direct benefit to end-users: freedom of choice, application-specific, etc.

⊕ More future-proof when the target hardware changes

⊕ It actually simplifies the design of composite operators (e.g. the exponential)!

You don’t know how many bits on this wire make sense? Keep it open as a parameter.
Then experiment: estimate cost and accuracy as a function of the parameters
Then program the choice of the best parameter values,

e.g. using ILP or common sense (whichever gives the best results)

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 22

Over-parameterization sounds a bit like over-engineering, doesn’t it?

⊖ OK, there is a bit more work involved in designing a parametric operator

To start with, it must be a hardware-generating program:
There is an infinite number of multipliers-by-a-constant.

You cannot chain them all in a library.

⊕ Direct benefit to end-users: freedom of choice, application-specific, etc.

⊕ More future-proof when the target hardware changes

⊕ It actually simplifies the design of composite operators (e.g. the exponential)!

You don’t know how many bits on this wire make sense? Keep it open as a parameter.
Then experiment: estimate cost and accuracy as a function of the parameters
Then program the choice of the best parameter values,

e.g. using ILP or common sense (whichever gives the best results)

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 22

Over-parameterization sounds a bit like over-engineering, doesn’t it?

⊖ OK, there is a bit more work involved in designing a parametric operator

To start with, it must be a hardware-generating program:
There is an infinite number of multipliers-by-a-constant.

You cannot chain them all in a library.

⊕ Direct benefit to end-users: freedom of choice, application-specific, etc.

⊕ More future-proof when the target hardware changes

⊕ It actually simplifies the design of composite operators (e.g. the exponential)!

You don’t know how many bits on this wire make sense? Keep it open as a parameter.
Then experiment: estimate cost and accuracy as a function of the parameters
Then program the choice of the best parameter values,

e.g. using ILP or common sense (whichever gives the best results)

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 22

Over-parameterization sounds a bit like over-engineering, doesn’t it?

⊖ OK, there is a bit more work involved in designing a parametric operator

To start with, it must be a hardware-generating program:
There is an infinite number of multipliers-by-a-constant.

You cannot chain them all in a library.

⊕ Direct benefit to end-users: freedom of choice, application-specific, etc.

⊕ More future-proof when the target hardware changes

⊕ It actually simplifies the design of composite operators (e.g. the exponential)!

You don’t know how many bits on this wire make sense? Keep it open as a parameter.
Then experiment: estimate cost and accuracy as a function of the parameters
Then program the choice of the best parameter values,

e.g. using ILP or common sense (whichever gives the best results)

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 22

Opportunity #2: Operator specialization

Not really fantastic arithmetic beasts... just the usual ones with special disabilities.

Multiplication by a constant

multiplication by integers: 17X = (X ≪ 4) + X ;
8721X = ((17X) ≪ 9) + 17X
but also by reals such as log(2) or sin(42π/256)
Two main techniques, tens of papers
An FFT mostly consists of constant multiplications

Division by 3 (for various values of 3)

in floating point for Jacobi and other stencils
integer (quotient and remainder) for addressing in 3 memory banks

A squarer is a multiplier specialization

× x2x

Specialization of elementary functions to specific domains

...

321
× 321

321
642
963

103041

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 23

Opportunity #2: Operator specialization

Not really fantastic arithmetic beasts... just the usual ones with special disabilities.

Multiplication by a constant

multiplication by integers: 17X = (X ≪ 4) + X ;
8721X = ((17X) ≪ 9) + 17X
but also by reals such as log(2) or sin(42π/256)
Two main techniques, tens of papers
An FFT mostly consists of constant multiplications

Division by 3 (for various values of 3)

in floating point for Jacobi and other stencils
integer (quotient and remainder) for addressing in 3 memory banks

A squarer is a multiplier specialization

× x2x

Specialization of elementary functions to specific domains

...

321
× 321

321
642
963

103041

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 23

Opportunity #2: Operator specialization

Not really fantastic arithmetic beasts... just the usual ones with special disabilities.

Multiplication by a constant

multiplication by integers: 17X = (X ≪ 4) + X ;
8721X = ((17X) ≪ 9) + 17X
but also by reals such as log(2) or sin(42π/256)
Two main techniques, tens of papers
An FFT mostly consists of constant multiplications

Division by 3 (for various values of 3)

in floating point for Jacobi and other stencils
integer (quotient and remainder) for addressing in 3 memory banks

A squarer is a multiplier specialization

× x2x

Specialization of elementary functions to specific domains

...

321
× 321

321
642
963

103041

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 23

Opportunity #2: Operator specialization

Not really fantastic arithmetic beasts... just the usual ones with special disabilities.

Multiplication by a constant

multiplication by integers: 17X = (X ≪ 4) + X ;
8721X = ((17X) ≪ 9) + 17X
but also by reals such as log(2) or sin(42π/256)
Two main techniques, tens of papers
An FFT mostly consists of constant multiplications

Division by 3 (for various values of 3)

in floating point for Jacobi and other stencils
integer (quotient and remainder) for addressing in 3 memory banks

A squarer is a multiplier specialization

× x2x

Specialization of elementary functions to specific domains

...

321
× 321

321
642
963

103041

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 23

A FloPoCo-enabled success story

Mario Garrido, Konrad Möller, and Martin Kumm.
World’s Fastest FFT Architectures: Breaking the Barrier of 100 GS/s.
IEEE Transactions on Circuits and Systems I, 66(4):1507–1516, 2019.

Fully unrolled FFT (up to 256 points)

i.e. inputting 256 complex values per cycle, at 500 MHz
well above 10 TOp/s if you count all additions and multiplications

16-bit in/out, wider datapath inside

Look, Ma: no multiplier !

each multiplier expanded as an adder graph (and optimally so)

about 1/5th of LUT + registers of the target device (Virtex UltraScale 190)
... leaving the 1800 DSP blocks free for more interesting things.

A good start, in FPGA design, is not to imitate the processor solution.

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 24

Division by 3 is simpler than exponential

TL;DR: multiplying X by 3 is computing 2X + X ;
Dividing by 3 should not be much more complex.

Dividing an hexadecimal number by 3

3F 2 D

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 25

Division by 3 is simpler than exponential

TL;DR: multiplying X by 3 is computing 2X + X ;
Dividing by 3 should not be much more complex.

Dividing an hexadecimal number by 3

0 5

3F 2 D

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 25

Division by 3 is simpler than exponential

TL;DR: multiplying X by 3 is computing 2X + X ;
Dividing by 3 should not be much more complex.

Dividing an hexadecimal number by 3

20 5

3F 2 D

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 25

Division by 3 is simpler than exponential

TL;DR: multiplying X by 3 is computing 2X + X ;
Dividing by 3 should not be much more complex.

Dividing an hexadecimal number by 3

2

020 5

3F 2 D

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 25

Division by 3 is simpler than exponential

TL;DR: multiplying X by 3 is computing 2X + X ;
Dividing by 3 should not be much more complex.

Dividing an hexadecimal number by 3

D2

020 5

3F 2 D

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 25

Division by 3 is simpler than exponential

TL;DR: multiplying X by 3 is computing 2X + X ;
Dividing by 3 should not be much more complex.

Dividing an hexadecimal number by 3

F

0

D2

020 5

3F 2 D

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 25

Getting inspiration from the vexations of childhood

F

0

D2

020 5

3F 2 D

R0 = RDivBy3

X0

Q0

4

4

2
DivBy3

X1

Q1

4

4

2
DivBy3

X2

Q2

4

3

2

R1R2

R3 = 0

OK, this looks like an architecture, but we still need to build this (smaller) DivBy3 box.

If you’re too lazy to compute, then tabulate

... here a table of 26 entries of 6 bits each.

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 26

Getting inspiration from the vexations of childhood

F

0

D2

020 5

3F 2 D

R0 = RDivBy3

X0

Q0

4

4

2
DivBy3

X1

Q1

4

4

2
DivBy3

X2

Q2

4

3

2

R1R2

R3 = 0

OK, this looks like an architecture, but we still need to build this (smaller) DivBy3 box.

If you’re too lazy to compute, then tabulate

... here a table of 26 entries of 6 bits each.

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 26

Getting inspiration from the vexations of childhood

F

0

D2

020 5

3F 2 D

R0 = RDivBy3

X0

Q0

4

4

2
DivBy3

X1

Q1

4

4

2
DivBy3

X2

Q2

4

3

2

R1R2

R3 = 0

OK, this looks like an architecture, but we still need to build this (smaller) DivBy3 box.

If you’re too lazy to compute, then tabulate

... here a table of 26 entries of 6 bits each.

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 26

Opportunity #3: target-specific optimizations

reg

clk

rst
DivBy3

Xi

k

Ri
rr

Qi

k

(Xi ,Ri−1)

/6

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

/6

(Ri ,Qi)

Generalizing hexadecimal to radix 2k

... or, how over-parameterization allows for adaptation

to various values of 3, like D = 5, or 7, or 9

to a given FPGA

Perfect match to modern FPGAs

Unit of area: the LUT, with α input bits (here α = 6)

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 27

Opportunity #3: target-specific optimizations

reg

clk

rst
DivBy3

Xi

k

Ri
rr

Qi

k

(Xi ,Ri−1)

/6

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

/6

(Ri ,Qi)

Generalizing hexadecimal to radix 2k

... or, how over-parameterization allows for adaptation

to various values of 3, like D = 5, or 7, or 9

to a given FPGA

Perfect match to modern FPGAs

Unit of area: the LUT, with α input bits (here α = 6)

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 27

Opportunity #3: target-specific optimizations

unpack

X

shift to fixed point

1.FXEX

×1/ log(2)

×(− log(2)) negate

+/−
Y

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix|

|E |

A

Z

Ztrunc

CTtrunc

H

P

T

M ≈ eY

excep
tio

n
b
its uo

R
FloPoCo FPExp

Modern FPGAs also have

small multipliers with pre-adders and post-adders

... and dual-ported small memories

Single-precision accurate exponential on Xilinx

one block RAM (0.1% of the chip)

one DSP block (0.1%)

< 400 LUTs (0.1%, ≈ one FP adder)

to compute one exponential per cycle at 500MHz
(∼ one AVX512 core trashing on its 16 FP32 lanes)

For one specific value only of the architectural parameter k!
(over-parameterization is cool)

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 28

Opportunity #3: target-specific optimizations

unpack

X

shift to fixed point

1.FXEX

×1/ log(2)

×(− log(2)) negate

+/−
Y

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix|

|E |

A

Z

Ztrunc

CTtrunc

H

P

T

M ≈ eY

excep
tio

n
b
its uo

R
FloPoCo FPExp

Modern FPGAs also have

small multipliers with pre-adders and post-adders

... and dual-ported small memories

Single-precision accurate exponential on Xilinx

one block RAM (0.1% of the chip)

one DSP block (0.1%)

< 400 LUTs (0.1%, ≈ one FP adder)

to compute one exponential per cycle at 500MHz
(∼ one AVX512 core trashing on its 16 FP32 lanes)

For one specific value only of the architectural parameter k!
(over-parameterization is cool)

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 28

Opportunity #3: target-specific optimizations

unpack

X

shift to fixed point

1.FXEX

×1/ log(2)

×(− log(2)) negate

+/−
Y

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix|

|E |

A

Z

Ztrunc

CTtrunc

H

P

T

M ≈ eY

excep
tio

n
b
its uo

R
FloPoCo FPExp

Modern FPGAs also have

small multipliers with pre-adders and post-adders

... and dual-ported small memories

Single-precision accurate exponential on Xilinx

one block RAM (0.1% of the chip)

one DSP block (0.1%)

< 400 LUTs (0.1%, ≈ one FP adder)

to compute one exponential per cycle at 500MHz
(∼ one AVX512 core trashing on its 16 FP32 lanes)

For one specific value only of the architectural parameter k!
(over-parameterization is cool)

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 28

Opportunity #3: target-specific optimizations

unpack

X

shift to fixed point

1.FXEX

×1/ log(2)

×(− log(2)) negate

+/−
Y

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix|

|E |

A

Z

Ztrunc

CTtrunc

H

P

T

M ≈ eY

excep
tio

n
b
its uo

R
FloPoCo FPExp

Modern FPGAs also have

small multipliers with pre-adders and post-adders

... and dual-ported small memories

Single-precision accurate exponential on Xilinx

one block RAM (0.1% of the chip)

one DSP block (0.1%)

< 400 LUTs (0.1%, ≈ one FP adder)

to compute one exponential per cycle at 500MHz
(∼ one AVX512 core trashing on its 16 FP32 lanes)

For one specific value only of the architectural parameter k!
(over-parameterization is cool)

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 28

Opportunity #3: target-specific optimizations

unpack

X
flp(wE ,wF)

shift to fixed point

1.FX ufix(0,−wF)EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF)FloPoCo FPExp

Modern FPGAs also have

small multipliers with pre-adders and post-adders

... and dual-ported small memories

Single-precision accurate exponential on Xilinx

one block RAM (0.1% of the chip)

one DSP block (0.1%)

< 400 LUTs (0.1%, ≈ one FP adder)

to compute one exponential per cycle at 500MHz
(∼ one AVX512 core trashing on its 16 FP32 lanes)

For one specific value only of the architectural parameter k!
(over-parameterization is cool)

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 28

Opportunity #4: Tabulation

unpack

X

shift to fixed point

1.FXEX

×1/ log(2)

×(− log(2)) negate

+/−
Y

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix|

|E |

A

Z

Ztrunc

CTtrunc

H

P

T

M ≈ eY

excep
tio

n
b
its uo

R
FloPoCo FPExp

Being unable to trust my reasoning, I learnt by heart
the results of all the possible multiplications

(E. Ionesco)

... and all the possible exponentials

... and all the possible values of eZ − Z − 1

... and indeed, all the possible multiplications

Reading a tabulated value is very efficient
when the table is close to the consumer.

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 29

Opportunity #4: Tabulation

unpack

X

shift to fixed point

1.FXEX

×1/ log(2)

×(− log(2)) negate

+/−
Y

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix|

|E |

A

Z

Ztrunc

CTtrunc

H

P

T

M ≈ eY

excep
tio

n
b
its uo

R
FloPoCo FPExp

Being unable to trust my reasoning, I learnt by heart
the results of all the possible multiplications

(E. Ionesco)

... and all the possible exponentials

... and all the possible values of eZ − Z − 1

... and indeed, all the possible multiplications

Reading a tabulated value is very efficient
when the table is close to the consumer.

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 29

Opportunity #4: Tabulation

unpack

X

shift to fixed point

1.FXEX

×1/ log(2)

×(− log(2)) negate

+/−
Y

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix|

|E |

A

Z

Ztrunc

CTtrunc

H

P

T

M ≈ eY

excep
tio

n
b
its uo

R
FloPoCo FPExp

Being unable to trust my reasoning, I learnt by heart
the results of all the possible multiplications

(E. Ionesco)

... and all the possible exponentials

... and all the possible values of eZ − Z − 1

... and indeed, all the possible multiplications

Reading a tabulated value is very efficient
when the table is close to the consumer.

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 29

Opportunity #4: Tabulation

unpack

X

shift to fixed point

1.FXEX

×1/ log(2)

×(− log(2)) negate

+/−
Y

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix|

|E |

A

Z

Ztrunc

CTtrunc

H

P

T

M ≈ eY

excep
tio

n
b
its uo

R
FloPoCo FPExp

Being unable to trust my reasoning, I learnt by heart
the results of all the possible multiplications

(E. Ionesco)

... and all the possible exponentials

... and all the possible values of eZ − Z − 1

... and indeed, all the possible multiplications

Reading a tabulated value is very efficient
when the table is close to the consumer.

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 29

Opportunity #4: Tabulation

unpack

X

shift to fixed point

1.FXEX

×1/ log(2)

×(− log(2)) negate

+/−
Y

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix|

|E |

A

Z

Ztrunc

CTtrunc

H

P

T

M ≈ eY

excep
tio

n
b
its uo

R
FloPoCo FPExp

Being unable to trust my reasoning, I learnt by heart
the results of all the possible multiplications

(E. Ionesco)

... and all the possible exponentials

... and all the possible values of eZ − Z − 1

... and indeed, all the possible multiplications

Reading a tabulated value is very efficient
when the table is close to the consumer.

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 29

Opportunity #5: Generic approximators (when tabulation won’t scale)

unpack

X
flp(wE ,wF)

shift to fixed point

1.FX ufix(0,−wF)EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF)FloPoCo FPExp

Polynomial Coefficient Table

× + × + × +
S2 S1

C0C1C2C3

X

A

α

w

Y

w − α
Ỹ3 Ỹ2

Ỹ3 = X

fi
n
a
l
ro
u
n
dP̃(Y)

R

The FloPoCo FixFunctionByPiecewisePoly operator

... has taken us so much time it is well worth a full part.

state-of-the-art polynomial approximation

each multiplier tailored with love and care

Also multipartite tables, filter approximators, and more to come.

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 30

Opportunity #6: merged arithmetic in bit heaps

... has taken us so much time it is well worth a full part.

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 31

Fantastic arithmetic beasts
escaped to vendor tools

Careless PhD students and their pets gone wrong

Fantastic but not evil: circuits computing just right

Fantastic arithmetic beasts escaped to vendor tools

Bit heaps: the mutant biology of arithmetic beasts

Why fantastic arithmetic beasts didn’t take over the world (and how to address it)

Backup slides

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 32

First steps

FloPoCo, PhD and Altera

2011 joined Altera European Technology Center

brought the FloPoCo spirit along

grafted into the DSP Builder team

model-based design (Matlab Simulink frontend)
powerful mapping backend (using WYSIWYG)
floating-point support in its infancy

https://agwaycapecod.com/the-art-of-grafting-plants/

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 33

First steps

FloPoCo, PhD and Altera

2011 joined Altera European Technology Center

brought the FloPoCo spirit along

grafted into the DSP Builder team

model-based design (Matlab Simulink frontend)
powerful mapping backend (using WYSIWYG)
floating-point support in its infancy

https://agwaycapecod.com/the-art-of-grafting-plants/

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 33

PhD life v.s. Industry

PhD: highly efficient exponential implementation
few months: approach analysis, design, implementation, test

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 34

PhD life v.s. Industry

PhD: highly efficient exponential implementation
few months: approach analysis, design, implementation, test

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 34

PhD life v.s. Industry

OpenCL - first real driver for math.h coverage

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 35

PhD life v.s. Industry

OpenCL - first real driver for math.h coverage

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 35

PhD life v.s. Industry

OpenCL - first real driver for math.h coverage

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 35

PhD life v.s. Industry

OpenCL - first real driver for math.h coverage

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 35

PhD life v.s. Industry

OpenCL - first real driver for math.h coverage

Hardware Testing
Exhaustive where possible

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 35

Pivotal tool for arithmetic function design

Plenty of previous works using hardware polynomial approximation

most of it hand-tuned for a given function (not generic)

not accessible (papers, not code)

heuristics used do not scale to precisions larger than 32 bits

Highlights

scales up to 64bits and more

state-of-the art polynomial approximations thanks to Sollya

finer datapath optimization

pipelined to a user-specified frequency

fully automated and integrated in open-source FloPoCo

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 36

Pivotal tool for arithmetic function design

Plenty of previous works using hardware polynomial approximation

most of it hand-tuned for a given function (not generic)

not accessible (papers, not code)

heuristics used do not scale to precisions larger than 32 bits

Highlights

scales up to 64bits and more

state-of-the art polynomial approximations thanks to Sollya

finer datapath optimization

pipelined to a user-specified frequency

fully automated and integrated in open-source FloPoCo

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 36

How do we do it?

Consider the function f (x), with x ∈ [0, 1) and IM(f (x)) ∈ [0, 1)
Approximate it with the polynomial p of degree d (given) such that:

εtotal = max |f − p| ≤ 2−pout = 1ulp

Two fold process

Approximation Generation

Datapath

εapprox

tablescoeff
f

degree (d)

pin, pout
Polynomial

εtotal = εapprox + εeval + 1/2ulp ≤ 1ulp

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 37

Polynomial approximation

use modified Remez algorithm from Sollya (fpminimax)
N. Brisebarre and S. Chevillard, Efficient polynomial L∞- approximations

input:

function f , degree d
interval I
list of coefficient size constraints

output:

polynomial with precision-constrained coefficients (no
need to round them)
max(|fi (y)− pi (y)|) ≤ εapprox∀i ∈ {0..2k − 1}

YESNO

fpminimax

intervals = 1

εapprox ≤ 1/4ulp

2× intervals

Advantages

usually best polynomials given the input specifications

might reduce by 1 polynomial degree for some intervals

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 38

Polynomial Evaluation

Approximation Generation

Datapath

εapprox

tablescoeff
f

degree (d)

pin, pout
Polynomial

Use Horner (trade latency for size)

p(y) = a0 + y × (a1 + y × (a2 + y × (a3 + y × a4︸︷︷︸
σ0︸ ︷︷ ︸

π1︸ ︷︷ ︸
σ1

)

︸ ︷︷ ︸
π2︸ ︷︷ ︸

σ2

)

︸ ︷︷ ︸
π3︸ ︷︷ ︸

σ3

)

︸ ︷︷ ︸
π4︸ ︷︷ ︸

σ4

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 39

The architecture for log2(1 + x),DP , d = 4

1 110 000101 110 0001011 110 0001011 110 000101101 00 1. 0001

address

1 11

σ0 σ1 σ2 σ3π3 σ4π4π1 π2

a4 a3 a2 a1 a0

Coefficient ROM

10

42 y

x

r

truncation on y and on πj

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 40

The architecture for log2(1 + x),DP , d = 4

1 110 000101 110 0001011 110 0001011 110 000101101 00 1. 0001

address

1 11

σ0 σ1 σ2 σ3π3 σ4π4π1 π2

a4 a3 a2 a1 a0

Coefficient ROM

10

42 y

x

r

× × ×
×

truncation on y and on πj

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 40

The architecture for log2(1 + x),DP , d = 4

1 110 000101 110 0001011 110 0001011 110 000101101 00 1. 0001

address

1 11

a4 a3 a2 a1 a0

Coefficient ROM

10

42 y

x

r

× × ×
×

trunc

σ′
d

trunc
ỹỹ

σ0

trunc

trunc

π′
3 π′

4π′
2 trunc

trunc

σ′
1

π′
1

truncation on y and on πj

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 40

Where to find them? In Megawizard, DSP Builder, oneAPI, OpenCL

1

Same function, different VHDL:

pipelined to 300 MHz
./flopoco frequency=300 FPAdd wE=6 wF=31

A larger but shorter-latency architectural variant:
./flopoco FPAdd wE=8 wF=23 dualpath=true

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 41

Where to find them? In Megawizard, DSP Builder, oneAPI, OpenCL

1

Same function, different VHDL:

pipelined to 300 MHz
./flopoco frequency=300 FPAdd wE=6 wF=31

A larger but shorter-latency architectural variant:
./flopoco FPAdd wE=8 wF=23 dualpath=true

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 41

Where to find them? In Megawizard, DSP Builder, oneAPI, OpenCL

1

Same function, different VHDL:

pipelined to 300 MHz
./cmdPolyEval -frequency 300 FPAdd 6 31

A larger but shorter-latency architectural variant:
./cmdPolyEval FPAddExpert 8 23 1 1 0

different function, another language (Verilog):
./cmdPolyEval -lang VERILOG FPArctan2 10 44

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 41

Where to find them? In Megawizard, DSP Builder, oneAPI, OpenCL

1

Same function, different VHDL:

pipelined to 300 MHz
./cmdPolyEval -frequency 300 FPAdd 6 31

A larger but shorter-latency architectural variant:
./cmdPolyEval FPAddExpert 8 23 1 1 0

different function, another language (Verilog):
./cmdPolyEval -lang VERILOG FPArctan2 10 44

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 41

Bit heaps:

the mutant biology of arithmetic beasts

Careless PhD students and their pets gone wrong

Fantastic but not evil: circuits computing just right

Fantastic arithmetic beasts escaped to vendor tools

Bit heaps: the mutant biology of arithmetic beasts

Why fantastic arithmetic beasts didn’t take over the world (and how to address it)

Backup slides

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 42

So much VHDL to write, so few ����XXXXslaves students to write it !

In theory, I know how to optimize by hand each operator for each target...

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Multipartite

∑
bi2

wi

Algorithmic description

Architecture generation
Spartan 5

Spartan6
Zynq 7000

Virtex-4Virtex-5Virtex-6Kintex-7

...... Stratix IIIStratix IVStratix VStratix 10

But I don’t have the resources.

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 43

So much VHDL to write, so few ����XXXXslaves students to write it !

In theory, I know how to optimize by hand each operator for each target...

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Multipartite

∑
bi2

wi

Algorithmic description

Architecture generation
Spartan 5

Spartan6
Zynq 7000

Virtex-4Virtex-5Virtex-6Kintex-7

...... Stratix IIIStratix IVStratix VStratix 10

But I don’t have the resources.

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 43

One data-structure to rule them all...

and in the hardware to bind them

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Multipartite

∑
bi2

wi

Algorithmic description

Architecture generation
Spartan 5

Spartan6
Zynq 7000

Virtex-4Virtex-5Virtex-6Kintex-7

...... Stratix IIIStratix IVStratix VStratix 10

The sum of weighted bits as a first-class arithmetic object

Captures the true binary math of an operation
(with all sorts of bit-level optimization opportunities)

The corresponding compressor trees can be optimized for each target
... and optimally so for practical sizes, thanks to M. Kumm

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 44

One data-structure to rule them all...

and in the hardware to bind them

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Multipartite

∑
bi2

wi

Algorithmic description

Architecture generation
Spartan 5

Spartan6
Zynq 7000

Virtex-4Virtex-5Virtex-6Kintex-7

...... Stratix IIIStratix IVStratix VStratix 10

The sum of weighted bits as a first-class arithmetic object

Captures the true binary math of an operation
(with all sorts of bit-level optimization opportunities)

The corresponding compressor trees can be optimized for each target
... and optimally so for practical sizes, thanks to M. Kumm

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 44

One data-structure to rule them all...
and in the hardware to bind them

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Multipartite

∑
bi2

wi

Algorithmic description

Architecture generation
Spartan 5

Spartan6
Zynq 7000

Virtex-4Virtex-5Virtex-6Kintex-7

...... Stratix IIIStratix IVStratix VStratix 10

The sum of weighted bits as a first-class arithmetic object

Captures the true binary math of an operation
(with all sorts of bit-level optimization opportunities)

The corresponding compressor trees can be optimized for each target
... and optimally so for practical sizes, thanks to M. Kumm

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 44

Sums of weighted bits?

Integers or real numbers represented in binary fixed-point

X =
imax∑

i=imin

2ixi

2i : “weight” =⇒ “X is a sum of weighted bits”

Representation as a dot diagrams

x0x1x2x3x4x5x6x7

weight 2021222324252627

Example: 17.42 written in binary

111010101101

weight 2−72−62−52−42−32−22−12021222324

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 45

The historical bit heap was invented for building multipliers

XY = (
3∑

i=0

2ixi)× (
3∑

j=0

2jyj)

=
∑
i ,j

2i+jxiyj

A multiplier is an architecture
that computes this sum.

Historical motivation for bit heaps:∑
i ,j

2i+jxiyj expresses the bit-level parallelism of the problem

... exposing design freedom thanks to associativity and commutativity of the
∑

(and a few other boolean tricks)

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 46

The historical bit heap was invented for building multipliers

XY = (
3∑

i=0

2ixi)× (
3∑

j=0

2jyj)

=
∑
i ,j

2i+jxiyj

A multiplier is an architecture
that computes this sum.

weight 2021222324252627

x0y0

x0y1

x0y2

x0y3

x1y0

x1y1

x1y2

x1y3

x2y0

x2y1

x2y2

x2y3

x3y0

x3y1

x3y2

x3y3

Historical motivation for bit heaps:∑
i ,j

2i+jxiyj expresses the bit-level parallelism of the problem

... exposing design freedom thanks to associativity and commutativity of the
∑

(and a few other boolean tricks)

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 46

The historical bit heap was invented for building multipliers

XY = (
3∑

i=0

2ixi)× (
3∑

j=0

2jyj)

=
∑
i ,j

2i+jxiyj

A multiplier is an architecture
that computes this sum.

weight 2021222324252627

x0y0

x0y1

x0y2

x0y3

x1y0

x1y1

x1y2

x1y3

x2y0

x2y1

x2y2

x2y3

x3y0

x3y1

x3y2

x3y3

Historical motivation for bit heaps:∑
i ,j

2i+jxiyj expresses the bit-level parallelism of the problem

... exposing design freedom thanks to associativity and commutativity of the
∑

(and a few other boolean tricks)

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 46

The historical bit heap was invented for building multipliers

XY = (
3∑

i=0

2ixi)× (
3∑

j=0

2jyj)

=
∑
i ,j

2i+jxiyj

A multiplier is an architecture
that computes this sum.

weight 2021222324252627

x3y0

x2y1x3y1

x1y2x2y2x3y2

x0y3x1y3x2y3x3y3 x0y0

x1y0

x2y0

x0y1

x1y1

x0y2

Historical motivation for bit heaps:∑
i ,j

2i+jxiyj expresses the bit-level parallelism of the problem

... exposing design freedom thanks to associativity and commutativity of the
∑

(and a few other boolean tricks)

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 46

Beyond product

A+

XY =
∑
i ,j

2i+jxiyj

x3y0

x2y1x3y1

x1y2x2y2x3y2

x0y3x1y3x2y3x3y3 x0y0

x1y0

x2y0

x0y1

x1y1

x0y2

a0a1a2a3a4a5a6a7a8a9

When generating an architecture

consider only one big sum of weighted bits

get rid of artificial sequentiality (inside operators, and between operators)

focus on true timing information (e.g. critical path delay of each weighted bit)

A global optimization instead of several local ones (and solved by ILP)

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 47

Beyond product

A+ XY =
∑
i

2iai +
∑
i ,j

2i+jxiyj

x3y0

x2y1x3y1

x1y2x2y2x3y2

x0y3x1y3x2y3x3y3 x0y0

x1y0

x2y0

x0y1

x1y1

x0y2

a0a1a2a3a4a5a6a7a8a9

When generating an architecture

consider only one big sum of weighted bits

get rid of artificial sequentiality (inside operators, and between operators)

focus on true timing information (e.g. critical path delay of each weighted bit)

A global optimization instead of several local ones (and solved by ILP)

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 47

Beyond product

A+ XY =
∑
w ,h

2wbw ,h

x3y0

x2y1x3y1

x1y2x2y2x3y2

x0y3x1y3x2y3x3y3 x0y0

x1y0

x2y0

x0y1

x1y1

x0y2

a0a1a2a3a4a5a6a7a8a9

When generating an architecture

consider only one big sum of weighted bits

get rid of artificial sequentiality (inside operators, and between operators)

focus on true timing information (e.g. critical path delay of each weighted bit)

A global optimization instead of several local ones (and solved by ILP)

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 47

Beyond product

A+ XY =
∑
w ,h

2wbw ,h

x3y0

x2y1x3y1

x1y2x2y2x3y2

x0y3x1y3x2y3x3y3 x0y0

x1y0

x2y0

x0y1

x1y1

x0y2

a0a1a2a3a4a5a6a7a8a9

When generating an architecture

consider only one big sum of weighted bits

get rid of artificial sequentiality (inside operators, and between operators)

focus on true timing information (e.g. critical path delay of each weighted bit)

A global optimization instead of several local ones (and solved by ILP)

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 47

Well beyond product

A bit heap is anything that can be developed as
∑
w ,h

2wbw ,h

the sum of two bit heaps is obviously a bit heap

the product of two bit heaps is also a bit heap

Any polynomial of multiple variables is a bit heap

... where each bw ,h is the AND of a few input bits.
This includes sums of squares, FIR filters, etc

And then more

A huge class of function may be approximated by polynomials

The bw ,h may be read from arbitrary look-up tables

An operator may include several bit heaps

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 48

Well beyond product

A bit heap is anything that can be developed as
∑
w ,h

2wbw ,h

the sum of two bit heaps is obviously a bit heap

the product of two bit heaps is also a bit heap

Any polynomial of multiple variables is a bit heap

... where each bw ,h is the AND of a few input bits.
This includes sums of squares, FIR filters, etc

And then more

A huge class of function may be approximated by polynomials

The bw ,h may be read from arbitrary look-up tables

An operator may include several bit heaps

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 48

Well beyond product

A bit heap is anything that can be developed as
∑
w ,h

2wbw ,h

the sum of two bit heaps is obviously a bit heap

the product of two bit heaps is also a bit heap

Any polynomial of multiple variables is a bit heap

... where each bw ,h is the AND of a few input bits.
This includes sums of squares, FIR filters, etc

And then more

A huge class of function may be approximated by polynomials

The bw ,h may be read from arbitrary look-up tables

An operator may include several bit heaps

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 48

A good hammer transforms every problem into a nail

A sine/cosine architecture (HEART 2013)

s q o A Yred

T T

T

T T

T

T

T

Z 3/6Z 2/2

×π
Sin/Cos table

sinPiX cosPiX

Swap/negate

sinZ

cosPiA
sinPiA

Z

sinAcosZ cosAcosZ
sinAsinZ cosAsinZ

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 49

A good hammer transforms every problem into a nail

A sine/cosine architecture (HEART 2013) mostly consists of 5 bit heaps

s q o A Yred

T T

T

T T

T

T

T

Z 3/6Z 2/2

×π
Sin/Cos table

sinPiX cosPiX

Swap/negate

sinZ

cosPiA
sinPiA

Z

sinAcosZ cosAcosZ
sinAsinZ cosAsinZ

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 49

A bit heap for Z − Z 3/6 in the previous architecture

Full bit heap

w=16 bits

Bit heap truncated just right

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 50

Bit heaps for other operators and filters

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 51

Computing the sum: bit heap compression

X

20212223242526

x3y0

x2y1x3y1

x1y2x2y2x3y2

x0y3x1y3x2y3x3y3 x0y0

x1y0

x2y0

x0y1

x1y1

x0y2

x0 y0

x3 y1

x3 y3

FAFAFA

GPC2,3;3FA

+

s1s2s3s4s5s6s7 s0

000

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 52

Computing the sum: bit heap compression

X

20212223242526

x3y0

x2y1x3y1

x1y2x2y2x3y2

x0y3x1y3x2y3x3y3 x0y0

x1y0

x2y0

x0y1

x1y1

x0y2

x0 y0

x3 y1

x3 y3

FAFAFA

GPC2,3;3FA

+

s1s2s3s4s5s6s7 s0

000

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 52

Computing the sum: bit heap compression

X

20212223242526

x0 y0

x3 y1

x3 y3

FAFAFA

GPC2,3;3FA

+

s1s2s3s4s5s6s7 s0

000

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 52

Computing the sum: bit heap compression

X

20212223242526

x0 y0

x3 y1

x3 y3

FA

A full adder (FA) inputs three bits of the same weight
and outputs their sum, written in binary on two bits.

FAFA

GPC2,3;3FA

+

s1s2s3s4s5s6s7 s0

000

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 52

Computing the sum: bit heap compression

X

20212223242526

x0 y0

x3 y1

x3 y3

FA

Let us pave the bit heap with as many FA as possible. They work in parallel.
We obtain a new bit heap

FAFA

GPC2,3;3FA

+

s1s2s3s4s5s6s7 s0

000

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 52

Computing the sum: bit heap compression

X

20212223242526

x0 y0

x3 y1

x3 y3

FAFAFA

Some of the initial bits remain uncompressed.

GPC2,3;3FA

+

s1s2s3s4s5s6s7 s0

000

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 52

Computing the sum: bit heap compression

X

20212223242526

x0 y0

x3 y1

x3 y3

FAFAFA

Some of the initial bits remain uncompressed.

They are simply transfered to the new bit heap.
Now let’s compress this new bit heap.

GPC2,3;3FA

+

s1s2s3s4s5s6s7 s0

000

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 52

Computing the sum: bit heap compression

X

20212223242526

x0 y0

x3 y1

x3 y3

FAFAFA

On FPGAs, fancy compressors are possible.
This one costs 3 LUT5 working in parallel to compress 5 bits into 3.
All things considered, it is more efficient than using FAs.

GPC2,3;3

FA

+

s1s2s3s4s5s6s7 s0

000

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 52

Computing the sum: bit heap compression

X

20212223242526

x0 y0

x3 y1

x3 y3

FAFAFA

GPC2,3;3

... and another full adder in parallel

FA

+

s1s2s3s4s5s6s7 s0

000

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 52

Computing the sum: bit heap compression

X

20212223242526

x0 y0

x3 y1

x3 y3

FAFAFA

GPC2,3;3FA

... and some bits untouched.

+

s1s2s3s4s5s6s7 s0

000

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 52

Computing the sum: bit heap compression

X

20212223242526

x0 y0

x3 y1

x3 y3

FAFAFA

GPC2,3;3FA
Finally, a bit heap of height ≤ 2
can be compressed by an adder
(a fast adder in VLSI,
using the fast carry chain on FPGAs)

+

s1s2s3s4s5s6s7 s0

000

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 52

Was it the optimal solution?

Answer is of course: it depends!

on the target FPGA

on the cost function to optimize (latency, or area, or ...)

I used to write ad-hoc heuristics for bit heap compression.

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 53

The first wave of an invasion of optimization techniques

Martin Kumm and Peter Zipf.
Pipelined Compressor Tree Optimization Using Integer Linear Programming
FPL, 2014.

Martin Kumm and Johannes Kappauf.
Advanced Compressor Tree Synthesis for FPGAs.
IEEE Transactions on Computers, 2018

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 54

This 11-year-old operator has improved by magic...

s q o A Yred

T T

T

T T

T

T

T

Z 3/6Z 2/2

×π
Sin/Cos table

sinPiX cosPiX

Swap/negate

sinZ

cosPiA
sinPiA

Z

sinAcosZ cosAcosZ
sinAsinZ cosAsinZ

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Multipartite

∑
bi2

wi

Algorithmic description

Architecture generation
Spartan 5

Spartan6
Zynq 7000

Virtex-4Virtex-5Virtex-6Kintex-7

...... Stratix IIIStratix IVStratix VStratix 10

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 55

Why fantastic arithmetic beasts
didn’t take over the world
(and how to address it)

Careless PhD students and their pets gone wrong

Fantastic but not evil: circuits computing just right

Fantastic arithmetic beasts escaped to vendor tools

Bit heaps: the mutant biology of arithmetic beasts

Why fantastic arithmetic beasts didn’t take over the world (and how to address it)

Backup slides

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 56

As a tool for real-world designers, FloPoCo is mostly useless

The project is in a double technological dead-end

on the input:
we cannot expect every designer to have read all our papers
(e.g. to know that there exists a floating-point divider-by-3.)

Example of bug report by a highly valued user

./flopoco FPConstMult wE=8 wF=23 constant=0.3333

Can you see what is wrong here?

≈ 1/3± 2−14 Argh! Not Computing Just Right!

(all real-world designers should buy the book, though)

on the output: the future is HLS, but
flopoco-generated VHDL is incompatible with HLS

a-posteriori interfacing is barely possible (and painful)
but result will be inefficient anyway

as long as HLS doesn’t control the computation at the core of the loop nest

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 57

As a tool for real-world designers, FloPoCo is mostly useless

The project is in a double technological dead-end

on the input:
we cannot expect every designer to have read all our papers
(e.g. to know that there exists a floating-point divider-by-3.)

Example of bug report by a highly valued user

./flopoco FPConstMult wE=8 wF=23 constant=0.3333

Can you see what is wrong here? ≈ 1/3± 2−14 Argh! Not Computing Just Right!

(all real-world designers should buy the book, though)

on the output: the future is HLS, but
flopoco-generated VHDL is incompatible with HLS

a-posteriori interfacing is barely possible (and painful)
but result will be inefficient anyway

as long as HLS doesn’t control the computation at the core of the loop nest

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 57

As a tool for real-world designers, FloPoCo is mostly useless

The project is in a double technological dead-end

on the input:
we cannot expect every designer to have read all our papers
(e.g. to know that there exists a floating-point divider-by-3.)

Example of bug report by a highly valued user

./flopoco FPConstMult wE=8 wF=23 constant=0.3333

Can you see what is wrong here? ≈ 1/3± 2−14 Argh! Not Computing Just Right!

(all real-world designers should buy the book, though)

on the output: the future is HLS, but
flopoco-generated VHDL is incompatible with HLS

a-posteriori interfacing is barely possible (and painful)
but result will be inefficient anyway

as long as HLS doesn’t control the computation at the core of the loop nest

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 57

As a tool for real-world designers, FloPoCo is mostly useless

The project is in a double technological dead-end

on the input:
we cannot expect every designer to have read all our papers
(e.g. to know that there exists a floating-point divider-by-3.)

Example of bug report by a highly valued user

./flopoco FPConstMult wE=8 wF=23 constant=0.3333

Can you see what is wrong here? ≈ 1/3± 2−14 Argh! Not Computing Just Right!

(all real-world designers should buy the book, though)

on the output: the future is HLS, but
flopoco-generated VHDL is incompatible with HLS

a-posteriori interfacing is barely possible (and painful)
but result will be inefficient anyway

as long as HLS doesn’t control the computation at the core of the loop nest

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 57

Why should I care about real-world designers, I am an academic

Should these fantastic arithmetic beasts remain chained in an ivory tower?

We need an HLS framework

An HLS framework where we can

detect interesting operations (or compound operations)

to convert them to efficient application-specific operators
by invoking a FloPoCo-like tool automatically

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 58

Why should I care about real-world designers, I am an academic

Should these fantastic arithmetic beasts remain chained in an ivory tower?

We need an HLS framework

An HLS framework where we can

detect interesting operations (or compound operations)

to convert them to efficient application-specific operators
by invoking a FloPoCo-like tool automatically

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 58

It sounds like Another Grand Plan
Escaping the FloPoCo ivory tower:

MLIR:
Multi-Level Intermediate
Representation

helps defining domain-specific
Intermediate Representations
(“dialects”)
... and program transformation /
optimization passes
... from high-level languages to
assembly code, or... Verilog.

(it was a very simplified overview)

All we need is a few bridges

... and quite a lot of janitoring

... then we can write endless
arithmetic optimization passes

MLIR

so
m
e
D
S
L

C
+
+

p
ar
se
r

V
er
ilo
g
ou

tp
u
t

R
ea
lly

H
L
S

High-level
arithmetic

VHDL
generation

Post
-Do

c op
en!

Doesn’t it look like a winning move?

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 59

It sounds like Another Grand Plan
Escaping the FloPoCo ivory tower:

MLIR:
Multi-Level Intermediate
Representation

helps defining domain-specific
Intermediate Representations
(“dialects”)
... and program transformation /
optimization passes
... from high-level languages to
assembly code, or... Verilog.

(it was a very simplified overview)

All we need is a few bridges

... and quite a lot of janitoring

... then we can write endless
arithmetic optimization passes

MLIR

so
m
e
D
S
L

C
+
+

p
ar
se
r

V
er
ilo
g
ou

tp
u
t

R
ea
lly

H
L
S

High-level
arithmetic

VHDL
generation

Post
-Do

c op
en!

Doesn’t it look like a winning move?

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 59

It sounds like Another Grand Plan
Escaping the FloPoCo ivory tower:

MLIR:
Multi-Level Intermediate
Representation

helps defining domain-specific
Intermediate Representations
(“dialects”)

... and program transformation /
optimization passes
... from high-level languages to
assembly code, or... Verilog.

(it was a very simplified overview)

All we need is a few bridges

... and quite a lot of janitoring

... then we can write endless
arithmetic optimization passes

MLIR

so
m
e
D
S
L

C
+
+

p
ar
se
r

V
er
ilo
g
ou

tp
u
t

R
ea
lly

H
L
S

High-level
arithmetic

VHDL
generation

Post
-Do

c op
en!

Doesn’t it look like a winning move?

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 59

It sounds like Another Grand Plan
Escaping the FloPoCo ivory tower:

MLIR:
Multi-Level Intermediate
Representation

helps defining domain-specific
Intermediate Representations
(“dialects”)
... and program transformation /
optimization passes
... from high-level languages to
assembly code, or... Verilog.

(it was a very simplified overview)

All we need is a few bridges

... and quite a lot of janitoring

... then we can write endless
arithmetic optimization passes

MLIR

so
m
e
D
S
L

C
+
+

p
ar
se
r

V
er
ilo
g
ou

tp
u
t

R
ea
lly

H
L
S

High-level
arithmetic

VHDL
generation

Post
-Do

c op
en!

Doesn’t it look like a winning move?

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 59

It sounds like Another Grand Plan
Escaping the FloPoCo ivory tower:

MLIR:
Multi-Level Intermediate
Representation

helps defining domain-specific
Intermediate Representations
(“dialects”)
... and program transformation /
optimization passes
... from high-level languages to
assembly code, or... Verilog.

(it was a very simplified overview)

All we need is a few bridges

... and quite a lot of janitoring

... then we can write endless
arithmetic optimization passes

MLIR

so
m
e
D
S
L

C
+
+

p
ar
se
r

V
er
ilo
g
ou

tp
u
t

R
ea
lly

H
L
S

High-level
arithmetic

VHDL
generation

Post
-Do

c op
en!

Doesn’t it look like a winning move?

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 59

It sounds like Another Grand Plan
Escaping the FloPoCo ivory tower:

MLIR:
Multi-Level Intermediate
Representation

helps defining domain-specific
Intermediate Representations
(“dialects”)
... and program transformation /
optimization passes
... from high-level languages to
assembly code, or... Verilog.

(it was a very simplified overview)

All we need is a few bridges

... and quite a lot of janitoring

... then we can write endless
arithmetic optimization passes

MLIR

so
m
e
D
S
L

C
+
+

p
ar
se
r

V
er
ilo
g
ou

tp
u
t

R
ea
lly

H
L
S

High-level
arithmetic

VHDL
generation

Post
-Do

c op
en!

Doesn’t it look like a winning move?

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 59

It sounds like Another Grand Plan
Escaping the FloPoCo ivory tower:

MLIR:
Multi-Level Intermediate
Representation

helps defining domain-specific
Intermediate Representations
(“dialects”)
... and program transformation /
optimization passes
... from high-level languages to
assembly code, or... Verilog.

(it was a very simplified overview)

All we need is a few bridges

... and quite a lot of janitoring

... then we can write endless
arithmetic optimization passes

MLIR

so
m
e
D
S
L

C
+
+

p
ar
se
r

V
er
ilo
g
ou

tp
u
t

R
ea
lly

H
L
S

High-level
arithmetic

VHDL
generation

Post
-Do

c op
en!

Doesn’t it look like a winning move?

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 59

It sounds like Another Grand Plan
Escaping the FloPoCo ivory tower:

MLIR:
Multi-Level Intermediate
Representation

helps defining domain-specific
Intermediate Representations
(“dialects”)
... and program transformation /
optimization passes
... from high-level languages to
assembly code, or... Verilog.

(it was a very simplified overview)

All we need is a few bridges

... and quite a lot of janitoring

... then we can write endless
arithmetic optimization passes

MLIR

so
m
e
D
S
L

C
+
+

p
ar
se
r

V
er
ilo
g
ou

tp
u
t

R
ea
lly

H
L
S

High-level
arithmetic

VHDL
generation

Post
-Do

c op
en!

Doesn’t it look like a winning move?

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 59

It sounds like Another Grand Plan
Escaping the FloPoCo ivory tower:

MLIR:
Multi-Level Intermediate
Representation

helps defining domain-specific
Intermediate Representations
(“dialects”)
... and program transformation /
optimization passes
... from high-level languages to
assembly code, or... Verilog.

(it was a very simplified overview)

All we need is a few bridges

... and quite a lot of janitoring

... then we can write endless
arithmetic optimization passes

MLIR

so
m
e
D
S
L

C
+
+

p
ar
se
r

V
er
ilo
g
ou

tp
u
t

R
ea
lly

H
L
S

High-level
arithmetic

VHDL
generation

Post
-Do

c op
en!

Doesn’t it look like a winning move?

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 59

Thanks for your attention

Save petrol! Save the planet! Don’t move useless metal! Ride a bicycle!

Save routing! Save power! Don’t move useless bits around!

Thanks to all the FloPoCo contributors:

H.Abdoli, S. Banescu, L. Besème, A. Böttcher, N. Bonfante,
N. Brunie, R. Bouarah, V. Capelle, M. Christ, C. Collange,
Q. Corradi, O. Desrentes, J. Detrey, A. Dudermel, P. Echeverŕıa,
F. Ferrandi, N. Fiege, L. Forget, M. Grad, M. Hardieck,
V. Huguet, K. Illyes, M. Istoan, M. Joldes, J. Kappauf, C. Klein,
M. Kleinlein, K. Klug, M. Kumm, J. Kühle, K. Kullmann,
L. Ledoux, J. Marchal, D. Mastrandrea, K. Möller, R. Murillo,
B. Pasca, B. Popa, X. Pujol, G. Sergent, V. Schmidt,
D. Thomas, R. Tudoran, A. Vasquez, A. Volkova. http://flopoco.org/

and the authors of GMP, MPFR, Sollya, SCIP, nvc, LATEX, TikZ, ...

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 60

http://flopoco.org/

Thanks for your attention

Save petrol! Save the planet! Don’t move useless metal! Ride a bicycle!
Save routing! Save power! Don’t move useless bits around!

Thanks to all the FloPoCo contributors:

H.Abdoli, S. Banescu, L. Besème, A. Böttcher, N. Bonfante,
N. Brunie, R. Bouarah, V. Capelle, M. Christ, C. Collange,
Q. Corradi, O. Desrentes, J. Detrey, A. Dudermel, P. Echeverŕıa,
F. Ferrandi, N. Fiege, L. Forget, M. Grad, M. Hardieck,
V. Huguet, K. Illyes, M. Istoan, M. Joldes, J. Kappauf, C. Klein,
M. Kleinlein, K. Klug, M. Kumm, J. Kühle, K. Kullmann,
L. Ledoux, J. Marchal, D. Mastrandrea, K. Möller, R. Murillo,
B. Pasca, B. Popa, X. Pujol, G. Sergent, V. Schmidt,
D. Thomas, R. Tudoran, A. Vasquez, A. Volkova. http://flopoco.org/

and the authors of GMP, MPFR, Sollya, SCIP, nvc, LATEX, TikZ, ...

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 60

http://flopoco.org/

Backup slides

Careless PhD students and their pets gone wrong

Fantastic but not evil: circuits computing just right

Fantastic arithmetic beasts escaped to vendor tools

Bit heaps: the mutant biology of arithmetic beasts

Why fantastic arithmetic beasts didn’t take over the world (and how to address it)

Backup slides

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 61

Don’t trust us

FloPoCo can generate an infinite number of operators.
Obviously, I haven’t tested them all.

Every operator comes with its specific test bench

./flopoco FixFunctionByPiecewisePoly f="exp(x*x)" lsbIn=-24 lsbOut=-24 d=3

TestBench

based on operator(X) = quantization(operation(X))

emulate() method is a few lines of code

based on trusted stuff such as MPFR and Sollya
and we write it first, and it is easy to audit
it should really be called specification()

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 62

It would be too simple, people would complain

Sometimes correct rounding is to expensive to implement, or just impossible to guarantee...

Faithful rounding: the next best thing

R

f (X)

A B

f (X)

C

Two equivalent specifications:

The output Y of the operator may be one of the two numbers surrounding f (X).
When f (X) is a machine number, then Y = f (X).

The difference between the output value Y and f (x) is strictly smaller than u.

Slightly less accurate than correct rounding, but still:

if you add one bit to the output, you divide u by 2, hence double the accuracy.

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 63

It would be too simple, people would complain

Sometimes correct rounding is to expensive to implement, or just impossible to guarantee...

Faithful rounding: the next best thing

R

f (X)

A B

f (X)

C

Two equivalent specifications:

The output Y of the operator may be one of the two numbers surrounding f (X).
When f (X) is a machine number, then Y = f (X).

The difference between the output value Y and f (x) is strictly smaller than u.

Slightly less accurate than correct rounding, but still:

if you add one bit to the output, you divide u by 2, hence double the accuracy.

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 63

Parenthesis: binary for theoretical physicists (and other signal people)

210 ≈ 103 (kBytes are actually 1024 bytes).

Another point of view : 10 log10(2) ≈ 3

In other words, 1 bit ≈ 3 dB

I don’t count signal/noise ratio in dB, I count accuracy in bits.
But it is the same thing.

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 64

Performance through pipelining

A combinatorial operator, with registers that produce its inputs and consume its outputs

X Y

∆t

t

∆t

clk

X X0 X1 X2

Y Y0 Y1

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 65

Performance through pipelining

The same operator, pipelined into N = 4 stages: frequency can be multiplied by 4.

X A B C Y

∆t/N

t

∆t/N∆t

clk

X X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

A A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

B B0 B1 B2 B3 B4 B5 B6 B7 B8 B9

C C0 C1 C2 C3 C4 C5 C6 C7 C8

Y Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 66

A more realistic example

unpack & exception handling,
exponent difference & swap

add/sub YinXin

>>

|Mx ±MYa |

LZC
+ shifter

rounding adder

−

+1

exception handling & pack

R

pipeline
stage 0

pipeline
stage 1

pipeline
stage 2

pipeline
stage 3

./flopoco fpadd we=8 wf=23

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 67

A more realistic example

unpack & exception handling,
exponent difference & swap

add/sub YinXin

>>

|Mx ±MYa |

LZC
+ shifter

rounding adder

−

+1

exception handling & pack

R

pipeline
stage 0

pipeline
stage 1

pipeline
stage 2

pipeline
stage 3

./flopoco frequency=200 fpadd we=8 wf=23

Adds 3 synchronization barriers:

FloPoCo reports a pipeline depth of 3,

meaning that there are 4 pipeline stages

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 67

Frequency-directed pipelining

The same FPAdder, pipelined for 300MHz:
./flopoco frequency=300 FPAdd wE=8 wF=23

FloPoCo interface to pipeline construction

“Please pipeline this operator to work at 200MHz”

Not the choice made by other core generators...

... but better because compositional

When you assemble components working at frequency f ,
you obtain a component working at frequency f .

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 68

Frequency-directed pipelining

The same FPAdder, pipelined for 300MHz:
./flopoco frequency=300 FPAdd wE=8 wF=23

FloPoCo interface to pipeline construction

“Please pipeline this operator to work at 200MHz”

Not the choice made by other core generators...

... but better because compositional

When you assemble components working at frequency f ,
you obtain a component working at frequency f .

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 68

Frequency-directed pipelining

The same FPAdder, pipelined for 300MHz:
./flopoco frequency=300 FPAdd wE=8 wF=23

FloPoCo interface to pipeline construction

“Please pipeline this operator to work at 200MHz”

Not the choice made by other core generators...

... but better because compositional

When you assemble components working at frequency f ,
you obtain a component working at frequency f .

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 68

Frequency-directed pipelining

The same FPAdder, pipelined for 300MHz:
./flopoco frequency=300 FPAdd wE=8 wF=23

FloPoCo interface to pipeline construction

“Please pipeline this operator to work at 200MHz”

Not the choice made by other core generators...

... but better because compositional

When you assemble components working at frequency f ,
you obtain a component working at frequency f .

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 68

Examples of pipeline

./flopoco frequency=400 FPAdd wE=8 wF=23

Final report:

|---Entity FPAdder_8_23_uid2_RightShifter

| Pipeline depth = 1

|---Entity IntAdder_27_f400_uid7

| Pipeline depth = 1

|---Entity LZCShifter_28_to_28_counting_32_uid14

| Pipeline depth = 4

|---Entity IntAdder_34_f400_uid17

| Pipeline depth = 1

Entity FPAdder_8_23_uid2

Pipeline depth = 9

./flopoco frequency=200 FPAdd wE=8 wF=23

Final report:

(...)

Pipeline depth = 4

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 69

Of course the frequency depends on the target FPGA

./flopoco target=Zynq7000 frequency=200 FPAdd wE=8 wF=23

Final report:

(...)

Pipeline depth = 5

./flopoco target=VirtexUltrascalePlus frequency=200 FPAdd wE=8 wF=23

Final report:

(...)

Pipeline depth = 1

Altera and Xilinx targets supported in the stable branch (at various levels of accuracy, in
various versions): Spartan3, Zynq7000, Virtex4, Virtex5, Virtex6, Kintex7,
VirtexUltrascalePlus, StratixII, StratixIII, StratixIV, StratixV, CycloneII, CycloneIII,
CycloneIV, CycloneV.

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 70

Frequency-directed pipelining in practice

We do our best but we know it’s hopeless

The actual frequency obtained will depend on the whole application (placement, routing
pressure etc)...

best-effort philosophy,

aiming to be accurate to 10% for an operator synthesized alone

asking a higher frequency provides a deeper pipeline

And a big TODO: VLSI targets.

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 71

Frequency-directed pipelining in practice

We do our best but we know it’s hopeless

The actual frequency obtained will depend on the whole application (placement, routing
pressure etc)...

best-effort philosophy,

aiming to be accurate to 10% for an operator synthesized alone

asking a higher frequency provides a deeper pipeline

And a big TODO: VLSI targets.

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 71

And a few extras

Options generateFigures and dependecyGraph produce figures...
./flopoco frequency=200 dependencygraph=full fpadd we=8 wf=23

creates a dot dot/ directory containing this:

F
P
A

d
d

_8
_2

3
_F

re
q

2
0

0
_u

id
2

R
ig

h
tS

h
if

te
rS

ti
ck

y
2

4
_b

y
_m

a
x
_2

6
_F

re
q

2
0

0
_u

id
4

In
tA

d
d

e
r_

2
7

_F
re

q
2

0
0

_u
id

6

N
o
rm

a
li

ze
r_

Z
_2

8
_2

8
_2

8
_F

re
q

2
0

0
_u

id
8

In
tA

d
d

e
r_

3
4

_F
re

q
2

0
0

_u
id

1
1

X
d

T
 =

 0
(0

,
0

)

e
x
cE

x
p

F
ra

cX
d

T
 =

 0
(0

,
0

)

e
X

m
e
Y

d
T

 =
 1

.0
9

2
e
-0

9
(0

,
1

.0
9

2
e
-0

9
)

e
Y

m
e
X

d
T

 =
 1

.0
9

2
e
-0

9
(0

,
1

.0
9

2
e
-0

9
) n

e
w

X
d

T
 =

 5
.4

3
e
-1

0
(0

,
1

.7
3

3
e
-0

9
)

n
e
w

Y
d

T
 =

 5
.4

3
e
-1

0
(0

,
1

.7
3

3
e
-0

9
)

Y
d

T
 =

 0
(0

,
0

)

e
x
cE

x
p

F
ra

cY
d

T
 =

 0
(0

,
0

)

R
d

T
 =

 0
(3

,
4

.4
7

3
e
-0

9
)

sw
a
p

d
T

 =
 1

.1
9

e
-0

9
(0

,
1

.1
9

e
-0

9
)

e
x
p

D
if

f
d

T
 =

 5
.4

3
e
-1

0
(0

,
1

.7
3

3
e
-0

9
)

sh
if

te
d

O
u

t
d

T
 =

 5
.6

7
5

e
-1

0
(0

,
2

.3
0

0
5

e
-0

9
)

sh
if

tV
al

d
T

 =
 5

.4
3

e
-1

0
(0

,
2

.8
4

3
5

e
-0

9
)

e
x
p

X
d

T
 =

 0
(0

,
1

.7
3

3
e
-0

9
)

e
x
cX

d
T

 =
 0

(0
,

1
.7

3
3

e
-0

9
)

si
g

n
X

d
T

 =
 0

(0
,

1
.7

3
3

e
-0

9
)

fr
a
cX

p
a
d

d
T

 =
 0

(0
,

1
.7

3
3

e
-0

9
)

e
x
cY

d
T

 =
 0

(0
,

1
.7

3
3

e
-0

9
)

si
g

n
Y

d
T

 =
 0

(0
,

1
.7

3
3

e
-0

9
)

fr
a
cY

d
T

 =
 5

.4
3

e
-1

0
(0

,
2

.2
7

6
e
-0

9
)

e
x
te

n
d

e
d

E
x
p

In
c

d
T

 =
 1

.0
9

2
e
-0

9
(0

,
2

.8
2

5
e
-0

9
)

sX
sY

E
x
n

X
Y

d
T

 =
 0

(0
,

1
.7

3
3

e
-0

9
)

sd
E

x
n

X
Y

d
T

 =
 0

(0
,

1
.7

3
3

e
-0

9
)

E
ff

S
u

b
d

T
 =

 5
.4

3
e
-1

0
(0

,
2

.2
7

6
e
-0

9
)

si
g

n
R

d
T

 =
 5

.4
3

e
-1

0
(0

,
2

.2
7

6
e
-0

9
)

E
ff

S
u

b
V

ec
to

r
d

T
 =

 0
(0

,
2

.2
7

6
e
-0

9
)

cI
n

S
ig

A
d

d
d

T
 =

 5
.4

3
e
-1

0
(1

,
4

.1
4

2
7

5
e
-0

9
)

e
x
cR

d
T

 =
 5

.4
3

e
-1

0
(3

,
4

.4
7

3
e
-0

9
)

si
g

n
R

2
d

T
 =

 5
.4

3
e
-1

0
(3

,
1

.4
5

2
e
-0

9
)

e
x
cR

t
d

T
 =

 6
.1

9
e
-1

0
(0

,
2

.3
5

2
e
-0

9
)

X
d

T
 =

 0
(0

,
2

.2
7

6
e
-0

9
)

e
x
E

x
p

E
x
c

d
T

 =
 0

(3
,

3
.3

8
7

e
-0

9
)

S
d

T
 =

 0
(0

,
2

.8
4

3
5

e
-0

9
)

sh
if

te
d

F
ra

cY
d

T
 =

 0
(0

,
3

.9
2

9
5

e
-0

9
)

fr
a
cY

p
a
d

d
T

 =
 0

(0
,

3
.9

2
9

5
e
-0

9
)

st
ic

k
y

d
T

 =
 0

(1
,

3
.5

9
9

7
5

e
-0

9
)

fr
a
cS

ti
ck

y
d

T
 =

 0
(2

,
6

.9
5

7
5

e
-1

0
)

fr
a
cY

p
a
d

X
o
rO

p
d

T
 =

 5
.4

3
e
-1

0
(0

,
4

.4
7

2
5

e
-0

9
)

Y
d

T
 =

 0
(0

,
4

.4
7

2
5

e
-0

9
)

X
d

T
 =

 0
(0

,
1

.7
3

3
e
-0

9
)

C
in

d
T

 =
 0

(1
,

4
.1

4
2

7
5

e
-0

9
)

fr
a
cA

d
d

R
e
su

lt
d

T
 =

 0
(2

,
6

.9
5

7
5

e
-1

0
)

X
d

T
 =

 0
(2

,
6

.9
5

7
5

e
-1

0
)

n
Z

e
ro

sN
e
w

d
T

 =
 0

(3
,

9
.0

9
e
-1

0
)

u
p

d
a
te

d
E

x
p

d
T

 =
 1

.0
9

2
e
-0

9
(3

,
2

.0
0

1
e
-0

9
)

e
q

d
if

fs
ig

n
d

T
 =

 0
(3

,
9

.0
9

e
-1

0
)

sh
if

te
d

F
ra

c
d

T
 =

 0
(3

,
1

.4
5

2
e
-0

9
)

e
x
p

F
ra

c
d

T
 =

 0
(3

,
2

.0
0

1
e
-0

9
)

st
k

d
T

 =
 0

(3
,

1
.4

5
2

e
-0

9
)

rn
d

d
T

 =
 0

(3
,

1
.4

5
2

e
-0

9
)

ls
b

d
T

 =
 0

(3
,

1
.4

5
2

e
-0

9
)

X
d

T
 =

 0
(3

,
2

.0
0

1
e
-0

9
)

n
e
e
d

T
o
R

o
u

n
d

d
T

 =
 5

.4
3

e
-1

0
(3

,
1

.9
9

5
e
-0

9
)

C
in

d
T

 =
 0

(3
,

1
.9

9
5

e
-0

9
)

cs
t_

9
d

T
 =

 0
(0

,
0

)

Y
d

T
 =

 0
(0

,
0

)

R
o
u

n
d

e
d

E
x
p

F
ra

c
d

T
 =

 0
(3

,
3

.3
8

7
e
-0

9
)

u
p

E
x
c

d
T

 =
 0

(3
,

3
.3

8
7

e
-0

9
)

fr
a
cR

d
T

 =
 0

(3
,

3
.3

8
7

e
-0

9
)

e
x
p

R
d

T
 =

 0
(3

,
3

.3
8

7
e
-0

9
)

co
m

p
u

te
d

R
d

T
 =

 0
(3

,
4

.4
7

3
e
-0

9
)

e
x
cR

t2
d

T
 =

 5
.4

3
e
-1

0
(3

,
3

.9
3

e
-0

9
)

X
p

a
d

d
e
d

d
T

 =
 0

(0
,

2
.2

7
6

e
-0

9
)

p
s

d
T

 =
 0

(0
,

2
.8

4
3

5
e
-0

9
)

R
d

T
 =

 0
(0

,
3

.9
2

9
5

e
-0

9
)

S
ti

ck
y

d
T

 =
 0

(1
,

3
.5

9
9

7
5

e
-0

9
)

st
k
4

d
T

 =
 1

.1
3

5
e
-0

9
(0

,
3

.9
7

8
5

e
-0

9
)

le
v
e
l4

d
T

 =
 0

(0
,

2
.8

4
3

5
e
-0

9
)

st
k
3

d
T

 =
 1

.1
1

0
5

e
-0

9
(1

,
3

.0
5

e
-1

0
)

le
v
e
l3

d
T

 =
 5

.4
3

e
-1

0
(0

,
3

.3
8

6
5

e
-0

9
)

st
k
2

d
T

 =
 1

.0
9

8
2

5
e
-0

9
(1

,
1

.4
0

3
2

5
e
-0

9
)

le
v
e
l2

d
T

 =
 0

(0
,

3
.3

8
6

5
e
-0

9
)

st
k
1

d
T

 =
 1

.0
9

8
2

5
e
-0

9
(1

,
2

.5
0

1
5

e
-0

9
)

le
v
e
l1

d
T

 =
 5

.4
3

e
-1

0
(0

,
3

.9
2

9
5

e
-0

9
)

st
k
0

d
T

 =
 1

.0
9

8
2

5
e
-0

9
(1

,
3

.5
9

9
7

5
e
-0

9
)

le
v
e
l0

d
T

 =
 0

(0
,

3
.9

2
9

5
e
-0

9
)

le
v
e
l5

d
T

 =
 0

(0
,

2
.2

7
6

e
-0

9
)

X
_1

d
T

 =
 0

(0
,

1
.7

3
3

e
-0

9
)

Y
_1

d
T

 =
 0

(0
,

4
.4

7
2

5
e
-0

9
)

C
in

_1
d

T
 =

 0
(1

,
4

.1
4

2
7

5
e
-0

9
)

R
d

T
 =

 0
(2

,
6

.9
5

7
5

e
-1

0
)

S
_1

d
T

 =
 1

.3
3

7
e
-0

9
(2

,
6

.9
5

7
5

e
-1

0
)

R
_1

d
T

 =
 0

(2
,

6
.9

5
7

5
e
-1

0
)

le
v
e
l5

d
T

 =
 0

(2
,

6
.9

5
7

5
e
-1

0
)

C
o
u

n
t

d
T

 =
 0

(3
,

9
.0

9
e
-1

0
)

R
d

T
 =

 0
(3

,
1

.4
5

2
e
-0

9
)

co
u

n
t4

d
T

 =
 5

.9
2

e
-1

0
(2

,
1

.2
8

7
7

5
e
-0

9
)

le
v
e
l4

d
T

 =
 5

.4
3

e
-1

0
(2

,
1

.8
3

0
7

5
e
-0

9
) sC

o
u

n
t

d
T

 =
 0

(3
,

9
.0

9
e
-1

0
)

co
u

n
t3

d
T

 =
 5

.6
7

5
e
-1

0
(2

,
2

.3
9

8
2

5
e
-0

9
)

le
v
e
l3

d
T

 =
 5

.4
3

e
-1

0
(2

,
2

.9
4

1
2

5
e
-0

9
)

co
u

n
t2

d
T

 =
 5

.5
5

2
5

e
-1

0
(2

,
3

.4
9

6
5

e
-0

9
)

le
v
e
l2

d
T

 =
 5

.4
3

e
-1

0
(2

,
4

.0
3

9
5

e
-0

9
)

co
u

n
t1

d
T

 =
 5

.5
5

2
5

e
-1

0
(2

,
4

.5
9

4
7

5
e
-0

9
)

le
v
e
l1

d
T

 =
 5

.4
3

e
-1

0
(3

,
3

.5
3

7
5

e
-1

0
)

co
u

n
t0

d
T

 =
 5

.5
5

2
5

e
-1

0
(3

,
9

.0
9

e
-1

0
)

le
v
e
l0

d
T

 =
 5

.4
3

e
-1

0
(3

,
1

.4
5

2
e
-0

9
)

R
tm

p
d

T
 =

 1
.3

8
6

e
-0

9
(3

,
3

.3
8

7
e
-0

9
)

R
d

T
 =

 0
(3

,
3

.3
8

7
e
-0

9
)

Helper functions for encoding/decoding FP format, if you want to check the testbench...
fp2bin 9 36 3.1415926

bin2fp 9 36 010100000000100100100001111110110100110100010011

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 72

And a few extras

Options generateFigures and dependecyGraph produce figures...
./flopoco frequency=200 dependencygraph=full fpadd we=8 wf=23

creates a dot dot/ directory containing this:

F
P
A

d
d

_8
_2

3
_F

re
q

2
0

0
_u

id
2

R
ig

h
tS

h
if

te
rS

ti
ck

y
2

4
_b

y
_m

a
x
_2

6
_F

re
q

2
0

0
_u

id
4

In
tA

d
d

e
r_

2
7

_F
re

q
2

0
0

_u
id

6

N
o
rm

a
li

ze
r_

Z
_2

8
_2

8
_2

8
_F

re
q

2
0

0
_u

id
8

In
tA

d
d

e
r_

3
4

_F
re

q
2

0
0

_u
id

1
1

X
d

T
 =

 0
(0

,
0

)

e
x
cE

x
p

F
ra

cX
d

T
 =

 0
(0

,
0

)

e
X

m
e
Y

d
T

 =
 1

.0
9

2
e
-0

9
(0

,
1

.0
9

2
e
-0

9
)

e
Y

m
e
X

d
T

 =
 1

.0
9

2
e
-0

9
(0

,
1

.0
9

2
e
-0

9
) n

e
w

X
d

T
 =

 5
.4

3
e
-1

0
(0

,
1

.7
3

3
e
-0

9
)

n
e
w

Y
d

T
 =

 5
.4

3
e
-1

0
(0

,
1

.7
3

3
e
-0

9
)

Y
d

T
 =

 0
(0

,
0

)

e
x
cE

x
p

F
ra

cY
d

T
 =

 0
(0

,
0

)

R
d

T
 =

 0
(3

,
4

.4
7

3
e
-0

9
)

sw
a
p

d
T

 =
 1

.1
9

e
-0

9
(0

,
1

.1
9

e
-0

9
)

e
x
p

D
if

f
d

T
 =

 5
.4

3
e
-1

0
(0

,
1

.7
3

3
e
-0

9
)

sh
if

te
d

O
u

t
d

T
 =

 5
.6

7
5

e
-1

0
(0

,
2

.3
0

0
5

e
-0

9
)

sh
if

tV
al

d
T

 =
 5

.4
3

e
-1

0
(0

,
2

.8
4

3
5

e
-0

9
)

e
x
p

X
d

T
 =

 0
(0

,
1

.7
3

3
e
-0

9
)

e
x
cX

d
T

 =
 0

(0
,

1
.7

3
3

e
-0

9
)

si
g

n
X

d
T

 =
 0

(0
,

1
.7

3
3

e
-0

9
)

fr
a
cX

p
a
d

d
T

 =
 0

(0
,

1
.7

3
3

e
-0

9
)

e
x
cY

d
T

 =
 0

(0
,

1
.7

3
3

e
-0

9
)

si
g

n
Y

d
T

 =
 0

(0
,

1
.7

3
3

e
-0

9
)

fr
a
cY

d
T

 =
 5

.4
3

e
-1

0
(0

,
2

.2
7

6
e
-0

9
)

e
x
te

n
d

e
d

E
x
p

In
c

d
T

 =
 1

.0
9

2
e
-0

9
(0

,
2

.8
2

5
e
-0

9
)

sX
sY

E
x
n

X
Y

d
T

 =
 0

(0
,

1
.7

3
3

e
-0

9
)

sd
E

x
n

X
Y

d
T

 =
 0

(0
,

1
.7

3
3

e
-0

9
)

E
ff

S
u

b
d

T
 =

 5
.4

3
e
-1

0
(0

,
2

.2
7

6
e
-0

9
)

si
g

n
R

d
T

 =
 5

.4
3

e
-1

0
(0

,
2

.2
7

6
e
-0

9
)

E
ff

S
u

b
V

ec
to

r
d

T
 =

 0
(0

,
2

.2
7

6
e
-0

9
)

cI
n

S
ig

A
d

d
d

T
 =

 5
.4

3
e
-1

0
(1

,
4

.1
4

2
7

5
e
-0

9
)

e
x
cR

d
T

 =
 5

.4
3

e
-1

0
(3

,
4

.4
7

3
e
-0

9
)

si
g

n
R

2
d

T
 =

 5
.4

3
e
-1

0
(3

,
1

.4
5

2
e
-0

9
)

e
x
cR

t
d

T
 =

 6
.1

9
e
-1

0
(0

,
2

.3
5

2
e
-0

9
)

X
d

T
 =

 0
(0

,
2

.2
7

6
e
-0

9
)

e
x
E

x
p

E
x
c

d
T

 =
 0

(3
,

3
.3

8
7

e
-0

9
)

S
d

T
 =

 0
(0

,
2

.8
4

3
5

e
-0

9
)

sh
if

te
d

F
ra

cY
d

T
 =

 0
(0

,
3

.9
2

9
5

e
-0

9
)

fr
a
cY

p
a
d

d
T

 =
 0

(0
,

3
.9

2
9

5
e
-0

9
)

st
ic

k
y

d
T

 =
 0

(1
,

3
.5

9
9

7
5

e
-0

9
)

fr
a
cS

ti
ck

y
d

T
 =

 0
(2

,
6

.9
5

7
5

e
-1

0
)

fr
a
cY

p
a
d

X
o
rO

p
d

T
 =

 5
.4

3
e
-1

0
(0

,
4

.4
7

2
5

e
-0

9
)

Y
d

T
 =

 0
(0

,
4

.4
7

2
5

e
-0

9
)

X
d

T
 =

 0
(0

,
1

.7
3

3
e
-0

9
)

C
in

d
T

 =
 0

(1
,

4
.1

4
2

7
5

e
-0

9
)

fr
a
cA

d
d

R
e
su

lt
d

T
 =

 0
(2

,
6

.9
5

7
5

e
-1

0
)

X
d

T
 =

 0
(2

,
6

.9
5

7
5

e
-1

0
)

n
Z

e
ro

sN
e
w

d
T

 =
 0

(3
,

9
.0

9
e
-1

0
)

u
p

d
a
te

d
E

x
p

d
T

 =
 1

.0
9

2
e
-0

9
(3

,
2

.0
0

1
e
-0

9
)

e
q

d
if

fs
ig

n
d

T
 =

 0
(3

,
9

.0
9

e
-1

0
)

sh
if

te
d

F
ra

c
d

T
 =

 0
(3

,
1

.4
5

2
e
-0

9
)

e
x
p

F
ra

c
d

T
 =

 0
(3

,
2

.0
0

1
e
-0

9
)

st
k

d
T

 =
 0

(3
,

1
.4

5
2

e
-0

9
)

rn
d

d
T

 =
 0

(3
,

1
.4

5
2

e
-0

9
)

ls
b

d
T

 =
 0

(3
,

1
.4

5
2

e
-0

9
)

X
d

T
 =

 0
(3

,
2

.0
0

1
e
-0

9
)

n
e
e
d

T
o
R

o
u

n
d

d
T

 =
 5

.4
3

e
-1

0
(3

,
1

.9
9

5
e
-0

9
)

C
in

d
T

 =
 0

(3
,

1
.9

9
5

e
-0

9
)

cs
t_

9
d

T
 =

 0
(0

,
0

)

Y
d

T
 =

 0
(0

,
0

)

R
o
u

n
d

e
d

E
x
p

F
ra

c
d

T
 =

 0
(3

,
3

.3
8

7
e
-0

9
)

u
p

E
x
c

d
T

 =
 0

(3
,

3
.3

8
7

e
-0

9
)

fr
a
cR

d
T

 =
 0

(3
,

3
.3

8
7

e
-0

9
)

e
x
p

R
d

T
 =

 0
(3

,
3

.3
8

7
e
-0

9
)

co
m

p
u

te
d

R
d

T
 =

 0
(3

,
4

.4
7

3
e
-0

9
)

e
x
cR

t2
d

T
 =

 5
.4

3
e
-1

0
(3

,
3

.9
3

e
-0

9
)

X
p

a
d

d
e
d

d
T

 =
 0

(0
,

2
.2

7
6

e
-0

9
)

p
s

d
T

 =
 0

(0
,

2
.8

4
3

5
e
-0

9
)

R
d

T
 =

 0
(0

,
3

.9
2

9
5

e
-0

9
)

S
ti

ck
y

d
T

 =
 0

(1
,

3
.5

9
9

7
5

e
-0

9
)

st
k
4

d
T

 =
 1

.1
3

5
e
-0

9
(0

,
3

.9
7

8
5

e
-0

9
)

le
v
e
l4

d
T

 =
 0

(0
,

2
.8

4
3

5
e
-0

9
)

st
k
3

d
T

 =
 1

.1
1

0
5

e
-0

9
(1

,
3

.0
5

e
-1

0
)

le
v
e
l3

d
T

 =
 5

.4
3

e
-1

0
(0

,
3

.3
8

6
5

e
-0

9
)

st
k
2

d
T

 =
 1

.0
9

8
2

5
e
-0

9
(1

,
1

.4
0

3
2

5
e
-0

9
)

le
v
e
l2

d
T

 =
 0

(0
,

3
.3

8
6

5
e
-0

9
)

st
k
1

d
T

 =
 1

.0
9

8
2

5
e
-0

9
(1

,
2

.5
0

1
5

e
-0

9
)

le
v
e
l1

d
T

 =
 5

.4
3

e
-1

0
(0

,
3

.9
2

9
5

e
-0

9
)

st
k
0

d
T

 =
 1

.0
9

8
2

5
e
-0

9
(1

,
3

.5
9

9
7

5
e
-0

9
)

le
v
e
l0

d
T

 =
 0

(0
,

3
.9

2
9

5
e
-0

9
)

le
v
e
l5

d
T

 =
 0

(0
,

2
.2

7
6

e
-0

9
)

X
_1

d
T

 =
 0

(0
,

1
.7

3
3

e
-0

9
)

Y
_1

d
T

 =
 0

(0
,

4
.4

7
2

5
e
-0

9
)

C
in

_1
d

T
 =

 0
(1

,
4

.1
4

2
7

5
e
-0

9
)

R
d

T
 =

 0
(2

,
6

.9
5

7
5

e
-1

0
)

S
_1

d
T

 =
 1

.3
3

7
e
-0

9
(2

,
6

.9
5

7
5

e
-1

0
)

R
_1

d
T

 =
 0

(2
,

6
.9

5
7

5
e
-1

0
)

le
v
e
l5

d
T

 =
 0

(2
,

6
.9

5
7

5
e
-1

0
)

C
o
u

n
t

d
T

 =
 0

(3
,

9
.0

9
e
-1

0
)

R
d

T
 =

 0
(3

,
1

.4
5

2
e
-0

9
)

co
u

n
t4

d
T

 =
 5

.9
2

e
-1

0
(2

,
1

.2
8

7
7

5
e
-0

9
)

le
v
e
l4

d
T

 =
 5

.4
3

e
-1

0
(2

,
1

.8
3

0
7

5
e
-0

9
) sC

o
u

n
t

d
T

 =
 0

(3
,

9
.0

9
e
-1

0
)

co
u

n
t3

d
T

 =
 5

.6
7

5
e
-1

0
(2

,
2

.3
9

8
2

5
e
-0

9
)

le
v
e
l3

d
T

 =
 5

.4
3

e
-1

0
(2

,
2

.9
4

1
2

5
e
-0

9
)

co
u

n
t2

d
T

 =
 5

.5
5

2
5

e
-1

0
(2

,
3

.4
9

6
5

e
-0

9
)

le
v
e
l2

d
T

 =
 5

.4
3

e
-1

0
(2

,
4

.0
3

9
5

e
-0

9
)

co
u

n
t1

d
T

 =
 5

.5
5

2
5

e
-1

0
(2

,
4

.5
9

4
7

5
e
-0

9
)

le
v
e
l1

d
T

 =
 5

.4
3

e
-1

0
(3

,
3

.5
3

7
5

e
-1

0
)

co
u

n
t0

d
T

 =
 5

.5
5

2
5

e
-1

0
(3

,
9

.0
9

e
-1

0
)

le
v
e
l0

d
T

 =
 5

.4
3

e
-1

0
(3

,
1

.4
5

2
e
-0

9
)

R
tm

p
d

T
 =

 1
.3

8
6

e
-0

9
(3

,
3

.3
8

7
e
-0

9
)

R
d

T
 =

 0
(3

,
3

.3
8

7
e
-0

9
)

Helper functions for encoding/decoding FP format, if you want to check the testbench...
fp2bin 9 36 3.1415926

bin2fp 9 36 010100000000100100100001111110110100110100010011

F. de Dinechin, B. Pasca Fantastic arithmetic beasts and where to find them 72

	Careless PhD students and their pets gone wrong
	Fantastic but not evil: circuits computing just right
	Fantastic arithmetic beasts escaped to vendor tools
	Bit heaps: the mutant biology of arithmetic beasts
	Why fantastic arithmetic beasts didn't take over the world (and how to address it)
	Backup slides

